Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Definitions and basic properties
evennodd
Next ⟩
oddneven
Metamath Proof Explorer
Ascii
Unicode
Theorem
evennodd
Description:
An even number is not an odd number.
(Contributed by
AV
, 16-Jun-2020)
Ref
Expression
Assertion
evennodd
⊢
Z
∈
Even
→
¬
Z
∈
Odd
Proof
Step
Hyp
Ref
Expression
1
iseven
⊢
Z
∈
Even
↔
Z
∈
ℤ
∧
Z
2
∈
ℤ
2
zeo2
⊢
Z
∈
ℤ
→
Z
2
∈
ℤ
↔
¬
Z
+
1
2
∈
ℤ
3
2
biimpd
⊢
Z
∈
ℤ
→
Z
2
∈
ℤ
→
¬
Z
+
1
2
∈
ℤ
4
3
imp
⊢
Z
∈
ℤ
∧
Z
2
∈
ℤ
→
¬
Z
+
1
2
∈
ℤ
5
1
4
sylbi
⊢
Z
∈
Even
→
¬
Z
+
1
2
∈
ℤ
6
5
olcd
⊢
Z
∈
Even
→
¬
Z
∈
ℤ
∨
¬
Z
+
1
2
∈
ℤ
7
isodd
⊢
Z
∈
Odd
↔
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
8
7
notbii
⊢
¬
Z
∈
Odd
↔
¬
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
9
ianor
⊢
¬
Z
∈
ℤ
∧
Z
+
1
2
∈
ℤ
↔
¬
Z
∈
ℤ
∨
¬
Z
+
1
2
∈
ℤ
10
8
9
bitri
⊢
¬
Z
∈
Odd
↔
¬
Z
∈
ℤ
∨
¬
Z
+
1
2
∈
ℤ
11
6
10
sylibr
⊢
Z
∈
Even
→
¬
Z
∈
Odd