Metamath Proof Explorer


Theorem evenp1odd

Description: The successor of an even number is odd. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evenp1odd ZEvenZ+1Odd

Proof

Step Hyp Ref Expression
1 evenz ZEvenZ
2 1 peano2zd ZEvenZ+1
3 iseven ZEvenZZ2
4 zcn ZZ
5 pncan1 ZZ+1-1=Z
6 4 5 syl ZZ+1-1=Z
7 6 eqcomd ZZ=Z+1-1
8 7 oveq1d ZZ2=Z+1-12
9 8 eleq1d ZZ2Z+1-12
10 9 biimpa ZZ2Z+1-12
11 3 10 sylbi ZEvenZ+1-12
12 isodd2 Z+1OddZ+1Z+1-12
13 2 11 12 sylanbrc ZEvenZ+1Odd