Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Additional theorems
evenprm2
Next ⟩
oddprmne2
Metamath Proof Explorer
Ascii
Unicode
Theorem
evenprm2
Description:
A prime number is even iff it is 2.
(Contributed by
AV
, 21-Jul-2020)
Ref
Expression
Assertion
evenprm2
⊢
P
∈
ℙ
→
P
∈
Even
↔
P
=
2
Proof
Step
Hyp
Ref
Expression
1
2a1
⊢
P
=
2
→
P
∈
ℙ
→
P
∈
Even
→
P
=
2
2
df-ne
⊢
P
≠
2
↔
¬
P
=
2
3
2
biimpri
⊢
¬
P
=
2
→
P
≠
2
4
3
anim2i
⊢
P
∈
ℙ
∧
¬
P
=
2
→
P
∈
ℙ
∧
P
≠
2
5
4
ancoms
⊢
¬
P
=
2
∧
P
∈
ℙ
→
P
∈
ℙ
∧
P
≠
2
6
eldifsn
⊢
P
∈
ℙ
∖
2
↔
P
∈
ℙ
∧
P
≠
2
7
5
6
sylibr
⊢
¬
P
=
2
∧
P
∈
ℙ
→
P
∈
ℙ
∖
2
8
oddprmALTV
⊢
P
∈
ℙ
∖
2
→
P
∈
Odd
9
oddneven
⊢
P
∈
Odd
→
¬
P
∈
Even
10
9
pm2.21d
⊢
P
∈
Odd
→
P
∈
Even
→
P
=
2
11
7
8
10
3syl
⊢
¬
P
=
2
∧
P
∈
ℙ
→
P
∈
Even
→
P
=
2
12
11
ex
⊢
¬
P
=
2
→
P
∈
ℙ
→
P
∈
Even
→
P
=
2
13
1
12
pm2.61i
⊢
P
∈
ℙ
→
P
∈
Even
→
P
=
2
14
2evenALTV
⊢
2
∈
Even
15
eleq1
⊢
P
=
2
→
P
∈
Even
↔
2
∈
Even
16
14
15
mpbiri
⊢
P
=
2
→
P
∈
Even
17
13
16
impbid1
⊢
P
∈
ℙ
→
P
∈
Even
↔
P
=
2