Metamath Proof Explorer


Theorem evl1addd

Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1addd.4 φ N U O N Y = W
evl1addd.g ˙ = + P
evl1addd.a + ˙ = + R
Assertion evl1addd φ M ˙ N U O M ˙ N Y = V + ˙ W

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1addd.4 φ N U O N Y = W
9 evl1addd.g ˙ = + P
10 evl1addd.a + ˙ = + R
11 eqid R 𝑠 B = R 𝑠 B
12 1 2 11 3 evl1rhm R CRing O P RingHom R 𝑠 B
13 5 12 syl φ O P RingHom R 𝑠 B
14 rhmghm O P RingHom R 𝑠 B O P GrpHom R 𝑠 B
15 13 14 syl φ O P GrpHom R 𝑠 B
16 ghmgrp1 O P GrpHom R 𝑠 B P Grp
17 15 16 syl φ P Grp
18 7 simpld φ M U
19 8 simpld φ N U
20 4 9 grpcl P Grp M U N U M ˙ N U
21 17 18 19 20 syl3anc φ M ˙ N U
22 eqid + R 𝑠 B = + R 𝑠 B
23 4 9 22 ghmlin O P GrpHom R 𝑠 B M U N U O M ˙ N = O M + R 𝑠 B O N
24 15 18 19 23 syl3anc φ O M ˙ N = O M + R 𝑠 B O N
25 eqid Base R 𝑠 B = Base R 𝑠 B
26 3 fvexi B V
27 26 a1i φ B V
28 4 25 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
29 13 28 syl φ O : U Base R 𝑠 B
30 29 18 ffvelrnd φ O M Base R 𝑠 B
31 29 19 ffvelrnd φ O N Base R 𝑠 B
32 11 25 5 27 30 31 10 22 pwsplusgval φ O M + R 𝑠 B O N = O M + ˙ f O N
33 24 32 eqtrd φ O M ˙ N = O M + ˙ f O N
34 33 fveq1d φ O M ˙ N Y = O M + ˙ f O N Y
35 11 3 25 5 27 30 pwselbas φ O M : B B
36 35 ffnd φ O M Fn B
37 11 3 25 5 27 31 pwselbas φ O N : B B
38 37 ffnd φ O N Fn B
39 fnfvof O M Fn B O N Fn B B V Y B O M + ˙ f O N Y = O M Y + ˙ O N Y
40 36 38 27 6 39 syl22anc φ O M + ˙ f O N Y = O M Y + ˙ O N Y
41 7 simprd φ O M Y = V
42 8 simprd φ O N Y = W
43 41 42 oveq12d φ O M Y + ˙ O N Y = V + ˙ W
44 34 40 43 3eqtrd φ O M ˙ N Y = V + ˙ W
45 21 44 jca φ M ˙ N U O M ˙ N Y = V + ˙ W