Metamath Proof Explorer


Theorem evl1expd

Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1expd.f ˙ = mulGrp P
evl1expd.e × ˙ = mulGrp R
evl1expd.4 φ N 0
Assertion evl1expd φ N ˙ M U O N ˙ M Y = N × ˙ V

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1expd.f ˙ = mulGrp P
9 evl1expd.e × ˙ = mulGrp R
10 evl1expd.4 φ N 0
11 crngring R CRing R Ring
12 5 11 syl φ R Ring
13 2 ply1ring R Ring P Ring
14 eqid mulGrp P = mulGrp P
15 14 ringmgp P Ring mulGrp P Mnd
16 12 13 15 3syl φ mulGrp P Mnd
17 7 simpld φ M U
18 14 4 mgpbas U = Base mulGrp P
19 18 8 mulgnn0cl mulGrp P Mnd N 0 M U N ˙ M U
20 16 10 17 19 syl3anc φ N ˙ M U
21 eqid R 𝑠 B = R 𝑠 B
22 1 2 21 3 evl1rhm R CRing O P RingHom R 𝑠 B
23 5 22 syl φ O P RingHom R 𝑠 B
24 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
25 14 24 rhmmhm O P RingHom R 𝑠 B O mulGrp P MndHom mulGrp R 𝑠 B
26 23 25 syl φ O mulGrp P MndHom mulGrp R 𝑠 B
27 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
28 18 8 27 mhmmulg O mulGrp P MndHom mulGrp R 𝑠 B N 0 M U O N ˙ M = N mulGrp R 𝑠 B O M
29 26 10 17 28 syl3anc φ O N ˙ M = N mulGrp R 𝑠 B O M
30 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
31 eqidd φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
32 3 fvexi B V
33 eqid mulGrp R = mulGrp R
34 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
35 eqid Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
36 eqid Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
37 eqid + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
38 eqid + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
39 21 33 34 24 35 36 37 38 pwsmgp R CRing B V Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
40 5 32 39 sylancl φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
41 40 simpld φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
42 ssv Base mulGrp R 𝑠 B V
43 42 a1i φ Base mulGrp R 𝑠 B V
44 ovexd φ x V y V x + mulGrp R 𝑠 B y V
45 40 simprd φ + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
46 45 oveqdr φ x V y V x + mulGrp R 𝑠 B y = x + mulGrp R 𝑠 B y
47 27 30 31 41 43 44 46 mulgpropd φ mulGrp R 𝑠 B = mulGrp R 𝑠 B
48 47 oveqd φ N mulGrp R 𝑠 B O M = N mulGrp R 𝑠 B O M
49 29 48 eqtrd φ O N ˙ M = N mulGrp R 𝑠 B O M
50 49 fveq1d φ O N ˙ M Y = N mulGrp R 𝑠 B O M Y
51 33 ringmgp R Ring mulGrp R Mnd
52 12 51 syl φ mulGrp R Mnd
53 32 a1i φ B V
54 eqid Base R 𝑠 B = Base R 𝑠 B
55 4 54 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
56 23 55 syl φ O : U Base R 𝑠 B
57 56 17 ffvelrnd φ O M Base R 𝑠 B
58 24 54 mgpbas Base R 𝑠 B = Base mulGrp R 𝑠 B
59 58 41 syl5eq φ Base R 𝑠 B = Base mulGrp R 𝑠 B
60 57 59 eleqtrd φ O M Base mulGrp R 𝑠 B
61 34 36 30 9 pwsmulg mulGrp R Mnd B V N 0 O M Base mulGrp R 𝑠 B Y B N mulGrp R 𝑠 B O M Y = N × ˙ O M Y
62 52 53 10 60 6 61 syl23anc φ N mulGrp R 𝑠 B O M Y = N × ˙ O M Y
63 7 simprd φ O M Y = V
64 63 oveq2d φ N × ˙ O M Y = N × ˙ V
65 62 64 eqtrd φ N mulGrp R 𝑠 B O M Y = N × ˙ V
66 50 65 eqtrd φ O N ˙ M Y = N × ˙ V
67 20 66 jca φ N ˙ M U O N ˙ M Y = N × ˙ V