Metamath Proof Explorer


Theorem evl1expd

Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1expd.f ˙ = mulGrp P
evl1expd.e × ˙ = mulGrp R
evl1expd.4 φ N 0
Assertion evl1expd φ N ˙ M U O N ˙ M Y = N × ˙ V

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1expd.f ˙ = mulGrp P
9 evl1expd.e × ˙ = mulGrp R
10 evl1expd.4 φ N 0
11 eqid mulGrp P = mulGrp P
12 11 4 mgpbas U = Base mulGrp P
13 crngring R CRing R Ring
14 5 13 syl φ R Ring
15 2 ply1ring R Ring P Ring
16 11 ringmgp P Ring mulGrp P Mnd
17 14 15 16 3syl φ mulGrp P Mnd
18 7 simpld φ M U
19 12 8 17 10 18 mulgnn0cld φ N ˙ M U
20 eqid R 𝑠 B = R 𝑠 B
21 1 2 20 3 evl1rhm R CRing O P RingHom R 𝑠 B
22 5 21 syl φ O P RingHom R 𝑠 B
23 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
24 11 23 rhmmhm O P RingHom R 𝑠 B O mulGrp P MndHom mulGrp R 𝑠 B
25 22 24 syl φ O mulGrp P MndHom mulGrp R 𝑠 B
26 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
27 12 8 26 mhmmulg O mulGrp P MndHom mulGrp R 𝑠 B N 0 M U O N ˙ M = N mulGrp R 𝑠 B O M
28 25 10 18 27 syl3anc φ O N ˙ M = N mulGrp R 𝑠 B O M
29 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
30 eqidd φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
31 3 fvexi B V
32 eqid mulGrp R = mulGrp R
33 eqid mulGrp R 𝑠 B = mulGrp R 𝑠 B
34 eqid Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
35 eqid Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
36 eqid + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
37 eqid + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
38 20 32 33 23 34 35 36 37 pwsmgp R CRing B V Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
39 5 31 38 sylancl φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
40 39 simpld φ Base mulGrp R 𝑠 B = Base mulGrp R 𝑠 B
41 ssv Base mulGrp R 𝑠 B V
42 41 a1i φ Base mulGrp R 𝑠 B V
43 ovexd φ x V y V x + mulGrp R 𝑠 B y V
44 39 simprd φ + mulGrp R 𝑠 B = + mulGrp R 𝑠 B
45 44 oveqdr φ x V y V x + mulGrp R 𝑠 B y = x + mulGrp R 𝑠 B y
46 26 29 30 40 42 43 45 mulgpropd φ mulGrp R 𝑠 B = mulGrp R 𝑠 B
47 46 oveqd φ N mulGrp R 𝑠 B O M = N mulGrp R 𝑠 B O M
48 28 47 eqtrd φ O N ˙ M = N mulGrp R 𝑠 B O M
49 48 fveq1d φ O N ˙ M Y = N mulGrp R 𝑠 B O M Y
50 32 ringmgp R Ring mulGrp R Mnd
51 14 50 syl φ mulGrp R Mnd
52 31 a1i φ B V
53 eqid Base R 𝑠 B = Base R 𝑠 B
54 4 53 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
55 22 54 syl φ O : U Base R 𝑠 B
56 55 18 ffvelcdmd φ O M Base R 𝑠 B
57 23 53 mgpbas Base R 𝑠 B = Base mulGrp R 𝑠 B
58 57 40 eqtrid φ Base R 𝑠 B = Base mulGrp R 𝑠 B
59 56 58 eleqtrd φ O M Base mulGrp R 𝑠 B
60 33 35 29 9 pwsmulg mulGrp R Mnd B V N 0 O M Base mulGrp R 𝑠 B Y B N mulGrp R 𝑠 B O M Y = N × ˙ O M Y
61 51 52 10 59 6 60 syl23anc φ N mulGrp R 𝑠 B O M Y = N × ˙ O M Y
62 7 simprd φ O M Y = V
63 62 oveq2d φ N × ˙ O M Y = N × ˙ V
64 61 63 eqtrd φ N mulGrp R 𝑠 B O M Y = N × ˙ V
65 49 64 eqtrd φ O N ˙ M Y = N × ˙ V
66 19 65 jca φ N ˙ M U O N ˙ M Y = N × ˙ V