Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomial evaluation
evl1fval1lem
Next ⟩
evl1fval1
Metamath Proof Explorer
Ascii
Unicode
Theorem
evl1fval1lem
Description:
Lemma for
evl1fval1
.
(Contributed by
AV
, 11-Sep-2019)
Ref
Expression
Hypotheses
evl1fval1.q
⊢
Q
=
eval
1
⁡
R
evl1fval1.b
⊢
B
=
Base
R
Assertion
evl1fval1lem
⊢
R
∈
V
→
Q
=
R
evalSub
1
B
Proof
Step
Hyp
Ref
Expression
1
evl1fval1.q
⊢
Q
=
eval
1
⁡
R
2
evl1fval1.b
⊢
B
=
Base
R
3
eqid
⊢
eval
1
⁡
R
=
eval
1
⁡
R
4
eqid
⊢
1
𝑜
eval
R
=
1
𝑜
eval
R
5
3
4
2
evl1fval
⊢
eval
1
⁡
R
=
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
eval
R
6
1
a1i
⊢
R
∈
V
→
Q
=
eval
1
⁡
R
7
2
fvexi
⊢
B
∈
V
8
7
pwid
⊢
B
∈
𝒫
B
9
eqid
⊢
R
evalSub
1
B
=
R
evalSub
1
B
10
eqid
⊢
1
𝑜
evalSub
R
=
1
𝑜
evalSub
R
11
9
10
2
evls1fval
⊢
R
∈
V
∧
B
∈
𝒫
B
→
R
evalSub
1
B
=
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
evalSub
R
⁡
B
12
8
11
mpan2
⊢
R
∈
V
→
R
evalSub
1
B
=
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
evalSub
R
⁡
B
13
4
2
evlval
⊢
1
𝑜
eval
R
=
1
𝑜
evalSub
R
⁡
B
14
13
eqcomi
⊢
1
𝑜
evalSub
R
⁡
B
=
1
𝑜
eval
R
15
14
coeq2i
⊢
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
evalSub
R
⁡
B
=
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
eval
R
16
12
15
eqtrdi
⊢
R
∈
V
→
R
evalSub
1
B
=
x
∈
B
B
1
𝑜
⟼
x
∘
y
∈
B
⟼
1
𝑜
×
y
∘
1
𝑜
eval
R
17
5
6
16
3eqtr4a
⊢
R
∈
V
→
Q
=
R
evalSub
1
B