Metamath Proof Explorer


Theorem evl1gsumadd

Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd . (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q = eval 1 R
evl1gsumadd.k K = Base R
evl1gsumadd.w W = Poly 1 R
evl1gsumadd.p P = R 𝑠 K
evl1gsumadd.b B = Base W
evl1gsumadd.r φ R CRing
evl1gsumadd.y φ x N Y B
evl1gsumadd.n φ N 0
evl1gsumadd.0 0 ˙ = 0 W
evl1gsumadd.f φ finSupp 0 ˙ x N Y
Assertion evl1gsumadd φ Q W x N Y = P x N Q Y

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q = eval 1 R
2 evl1gsumadd.k K = Base R
3 evl1gsumadd.w W = Poly 1 R
4 evl1gsumadd.p P = R 𝑠 K
5 evl1gsumadd.b B = Base W
6 evl1gsumadd.r φ R CRing
7 evl1gsumadd.y φ x N Y B
8 evl1gsumadd.n φ N 0
9 evl1gsumadd.0 0 ˙ = 0 W
10 evl1gsumadd.f φ finSupp 0 ˙ x N Y
11 1 2 evl1fval1 Q = R evalSub 1 K
12 11 a1i φ Q = R evalSub 1 K
13 12 fveq1d φ Q W x N Y = R evalSub 1 K W x N Y
14 2 ressid R CRing R 𝑠 K = R
15 6 14 syl φ R 𝑠 K = R
16 15 eqcomd φ R = R 𝑠 K
17 16 fveq2d φ Poly 1 R = Poly 1 R 𝑠 K
18 3 17 syl5eq φ W = Poly 1 R 𝑠 K
19 18 fvoveq1d φ R evalSub 1 K W x N Y = R evalSub 1 K Poly 1 R 𝑠 K x N Y
20 eqid R evalSub 1 K = R evalSub 1 K
21 eqid Poly 1 R 𝑠 K = Poly 1 R 𝑠 K
22 eqid 0 Poly 1 R 𝑠 K = 0 Poly 1 R 𝑠 K
23 eqid R 𝑠 K = R 𝑠 K
24 eqid Base Poly 1 R 𝑠 K = Base Poly 1 R 𝑠 K
25 crngring R CRing R Ring
26 2 subrgid R Ring K SubRing R
27 6 25 26 3syl φ K SubRing R
28 18 adantr φ x N W = Poly 1 R 𝑠 K
29 28 fveq2d φ x N Base W = Base Poly 1 R 𝑠 K
30 5 29 syl5eq φ x N B = Base Poly 1 R 𝑠 K
31 7 30 eleqtrd φ x N Y Base Poly 1 R 𝑠 K
32 18 eqcomd φ Poly 1 R 𝑠 K = W
33 32 fveq2d φ 0 Poly 1 R 𝑠 K = 0 W
34 33 9 eqtr4di φ 0 Poly 1 R 𝑠 K = 0 ˙
35 10 34 breqtrrd φ finSupp 0 Poly 1 R 𝑠 K x N Y
36 20 2 21 22 23 4 24 6 27 31 8 35 evls1gsumadd φ R evalSub 1 K Poly 1 R 𝑠 K x N Y = P x N R evalSub 1 K Y
37 19 36 eqtrd φ R evalSub 1 K W x N Y = P x N R evalSub 1 K Y
38 12 fveq1d φ Q Y = R evalSub 1 K Y
39 38 eqcomd φ R evalSub 1 K Y = Q Y
40 39 mpteq2dv φ x N R evalSub 1 K Y = x N Q Y
41 40 oveq2d φ P x N R evalSub 1 K Y = P x N Q Y
42 13 37 41 3eqtrd φ Q W x N Y = P x N Q Y