Metamath Proof Explorer


Theorem evl1gsumaddval

Description: Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q = eval 1 R
evl1gsumadd.k K = Base R
evl1gsumadd.w W = Poly 1 R
evl1gsumadd.p P = R 𝑠 K
evl1gsumadd.b B = Base W
evl1gsumadd.r φ R CRing
evl1gsumadd.y φ x N Y B
evl1gsumadd.n φ N 0
evl1gsumaddval.f φ N Fin
evl1gsumaddval.c φ C K
Assertion evl1gsumaddval φ Q W x N Y C = R x N Q Y C

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q = eval 1 R
2 evl1gsumadd.k K = Base R
3 evl1gsumadd.w W = Poly 1 R
4 evl1gsumadd.p P = R 𝑠 K
5 evl1gsumadd.b B = Base W
6 evl1gsumadd.r φ R CRing
7 evl1gsumadd.y φ x N Y B
8 evl1gsumadd.n φ N 0
9 evl1gsumaddval.f φ N Fin
10 evl1gsumaddval.c φ C K
11 7 ralrimiva φ x N Y B
12 1 3 2 5 6 10 11 9 evl1gsumd φ Q W x N Y C = R x N Q Y C