Metamath Proof Explorer


Theorem evl1gsummon

Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1gsummon.q Q = eval 1 R
evl1gsummon.k K = Base R
evl1gsummon.w W = Poly 1 R
evl1gsummon.b B = Base W
evl1gsummon.x X = var 1 R
evl1gsummon.h H = mulGrp R
evl1gsummon.e E = H
evl1gsummon.g G = mulGrp W
evl1gsummon.p × ˙ = G
evl1gsummon.t1 × ˙ = W
evl1gsummon.t2 · ˙ = R
evl1gsummon.r φ R CRing
evl1gsummon.a φ x M A K
evl1gsummon.m φ M 0
evl1gsummon.f φ M Fin
evl1gsummon.n φ x M N 0
evl1gsummon.c φ C K
Assertion evl1gsummon φ Q W x M A × ˙ N × ˙ X C = R x M A · ˙ N E C

Proof

Step Hyp Ref Expression
1 evl1gsummon.q Q = eval 1 R
2 evl1gsummon.k K = Base R
3 evl1gsummon.w W = Poly 1 R
4 evl1gsummon.b B = Base W
5 evl1gsummon.x X = var 1 R
6 evl1gsummon.h H = mulGrp R
7 evl1gsummon.e E = H
8 evl1gsummon.g G = mulGrp W
9 evl1gsummon.p × ˙ = G
10 evl1gsummon.t1 × ˙ = W
11 evl1gsummon.t2 · ˙ = R
12 evl1gsummon.r φ R CRing
13 evl1gsummon.a φ x M A K
14 evl1gsummon.m φ M 0
15 evl1gsummon.f φ M Fin
16 evl1gsummon.n φ x M N 0
17 evl1gsummon.c φ C K
18 eqid R 𝑠 K = R 𝑠 K
19 crngring R CRing R Ring
20 12 19 syl φ R Ring
21 3 ply1lmod R Ring W LMod
22 20 21 syl φ W LMod
23 22 adantr φ x M W LMod
24 13 r19.21bi φ x M A K
25 3 ply1sca R CRing R = Scalar W
26 12 25 syl φ R = Scalar W
27 26 fveq2d φ Base R = Base Scalar W
28 2 27 syl5eq φ K = Base Scalar W
29 28 adantr φ x M K = Base Scalar W
30 24 29 eleqtrd φ x M A Base Scalar W
31 3 ply1ring R Ring W Ring
32 20 31 syl φ W Ring
33 8 ringmgp W Ring G Mnd
34 32 33 syl φ G Mnd
35 34 adantr φ x M G Mnd
36 16 r19.21bi φ x M N 0
37 20 adantr φ x M R Ring
38 5 3 4 vr1cl R Ring X B
39 37 38 syl φ x M X B
40 8 4 mgpbas B = Base G
41 40 9 mulgnn0cl G Mnd N 0 X B N × ˙ X B
42 35 36 39 41 syl3anc φ x M N × ˙ X B
43 eqid Scalar W = Scalar W
44 eqid Base Scalar W = Base Scalar W
45 4 43 10 44 lmodvscl W LMod A Base Scalar W N × ˙ X B A × ˙ N × ˙ X B
46 23 30 42 45 syl3anc φ x M A × ˙ N × ˙ X B
47 1 2 3 18 4 12 46 14 15 17 evl1gsumaddval φ Q W x M A × ˙ N × ˙ X C = R x M Q A × ˙ N × ˙ X C
48 12 adantr φ x M R CRing
49 17 adantr φ x M C K
50 1 3 8 5 2 9 48 36 10 24 49 6 7 11 evl1scvarpwval φ x M Q A × ˙ N × ˙ X C = A · ˙ N E C
51 50 mpteq2dva φ x M Q A × ˙ N × ˙ X C = x M A · ˙ N E C
52 51 oveq2d φ R x M Q A × ˙ N × ˙ X C = R x M A · ˙ N E C
53 47 52 eqtrd φ Q W x M A × ˙ N × ˙ X C = R x M A · ˙ N E C