Metamath Proof Explorer


Theorem evl1gsummul

Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q = eval 1 R
evl1gsumadd.k K = Base R
evl1gsumadd.w W = Poly 1 R
evl1gsumadd.p P = R 𝑠 K
evl1gsumadd.b B = Base W
evl1gsumadd.r φ R CRing
evl1gsumadd.y φ x N Y B
evl1gsumadd.n φ N 0
evl1gsummul.1 1 ˙ = 1 W
evl1gsummul.g G = mulGrp W
evl1gsummul.h H = mulGrp P
evl1gsummul.f φ finSupp 1 ˙ x N Y
Assertion evl1gsummul φ Q G x N Y = H x N Q Y

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q = eval 1 R
2 evl1gsumadd.k K = Base R
3 evl1gsumadd.w W = Poly 1 R
4 evl1gsumadd.p P = R 𝑠 K
5 evl1gsumadd.b B = Base W
6 evl1gsumadd.r φ R CRing
7 evl1gsumadd.y φ x N Y B
8 evl1gsumadd.n φ N 0
9 evl1gsummul.1 1 ˙ = 1 W
10 evl1gsummul.g G = mulGrp W
11 evl1gsummul.h H = mulGrp P
12 evl1gsummul.f φ finSupp 1 ˙ x N Y
13 10 5 mgpbas B = Base G
14 10 9 ringidval 1 ˙ = 0 G
15 3 ply1crng R CRing W CRing
16 10 crngmgp W CRing G CMnd
17 6 15 16 3syl φ G CMnd
18 crngring R CRing R Ring
19 6 18 syl φ R Ring
20 2 fvexi K V
21 19 20 jctir φ R Ring K V
22 4 pwsring R Ring K V P Ring
23 11 ringmgp P Ring H Mnd
24 21 22 23 3syl φ H Mnd
25 nn0ex 0 V
26 25 a1i φ 0 V
27 26 8 ssexd φ N V
28 1 3 4 2 evl1rhm R CRing Q W RingHom P
29 10 11 rhmmhm Q W RingHom P Q G MndHom H
30 6 28 29 3syl φ Q G MndHom H
31 13 14 17 24 27 30 7 12 gsummptmhm φ H x N Q Y = Q G x N Y
32 31 eqcomd φ Q G x N Y = H x N Q Y