Metamath Proof Explorer


Theorem evl1maprhm

Description: The function F mapping polynomials p to their evaluation at a given point X is a ring homomorphism. (Contributed by metakunt, 19-May-2025)

Ref Expression
Hypotheses evl1maprhm.q O = eval 1 R
evl1maprhm.p P = Poly 1 R
evl1maprhm.b B = Base R
evl1maprhm.u U = Base P
evl1maprhm.r φ R CRing
evl1maprhm.y φ X B
evl1maprhm.f F = p U O p X
Assertion evl1maprhm φ F P RingHom R

Proof

Step Hyp Ref Expression
1 evl1maprhm.q O = eval 1 R
2 evl1maprhm.p P = Poly 1 R
3 evl1maprhm.b B = Base R
4 evl1maprhm.u U = Base P
5 evl1maprhm.r φ R CRing
6 evl1maprhm.y φ X B
7 evl1maprhm.f F = p U O p X
8 7 a1i φ F = p U O p X
9 ssidd φ Base R Base R
10 5 elexd φ R V
11 5 crngringd φ R Ring
12 eqid Base R = Base R
13 12 subrgid R Ring Base R SubRing R
14 11 13 syl φ Base R SubRing R
15 14 elexd φ Base R V
16 eqid R 𝑠 Base R = R 𝑠 Base R
17 16 12 ressid2 Base R Base R R V Base R V R 𝑠 Base R = R
18 9 10 15 17 syl3anc φ R 𝑠 Base R = R
19 eqcom R 𝑠 Base R = R R = R 𝑠 Base R
20 19 imbi2i φ R 𝑠 Base R = R φ R = R 𝑠 Base R
21 18 20 mpbi φ R = R 𝑠 Base R
22 21 fveq2d φ Poly 1 R = Poly 1 R 𝑠 Base R
23 2 22 eqtrid φ P = Poly 1 R 𝑠 Base R
24 23 fveq2d φ Base P = Base Poly 1 R 𝑠 Base R
25 4 24 eqtrid φ U = Base Poly 1 R 𝑠 Base R
26 1 12 evl1fval1 O = R evalSub 1 Base R
27 26 a1i φ O = R evalSub 1 Base R
28 27 fveq1d φ O p = R evalSub 1 Base R p
29 28 fveq1d φ O p X = R evalSub 1 Base R p X
30 25 29 mpteq12dv φ p U O p X = p Base Poly 1 R 𝑠 Base R R evalSub 1 Base R p X
31 eqid R evalSub 1 Base R = R evalSub 1 Base R
32 eqid Poly 1 R 𝑠 Base R = Poly 1 R 𝑠 Base R
33 eqid Base Poly 1 R 𝑠 Base R = Base Poly 1 R 𝑠 Base R
34 6 3 eleqtrdi φ X Base R
35 eqid p Base Poly 1 R 𝑠 Base R R evalSub 1 Base R p X = p Base Poly 1 R 𝑠 Base R R evalSub 1 Base R p X
36 31 32 12 33 5 14 34 35 evls1maprhm φ p Base Poly 1 R 𝑠 Base R R evalSub 1 Base R p X Poly 1 R 𝑠 Base R RingHom R
37 30 36 eqeltrd φ p U O p X Poly 1 R 𝑠 Base R RingHom R
38 2 a1i φ P = Poly 1 R
39 18 eqcomd φ R = R 𝑠 Base R
40 39 fveq2d φ Poly 1 R = Poly 1 R 𝑠 Base R
41 38 40 eqtr2d φ Poly 1 R 𝑠 Base R = P
42 41 oveq1d φ Poly 1 R 𝑠 Base R RingHom R = P RingHom R
43 37 42 eleqtrd φ p U O p X P RingHom R
44 8 43 eqeltrd φ F P RingHom R