Metamath Proof Explorer


Theorem evl1muld

Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O=eval1R
evl1addd.p P=Poly1R
evl1addd.b B=BaseR
evl1addd.u U=BaseP
evl1addd.1 φRCRing
evl1addd.2 φYB
evl1addd.3 φMUOMY=V
evl1addd.4 φNUONY=W
evl1muld.t ˙=P
evl1muld.s ·˙=R
Assertion evl1muld φM˙NUOM˙NY=V·˙W

Proof

Step Hyp Ref Expression
1 evl1addd.q O=eval1R
2 evl1addd.p P=Poly1R
3 evl1addd.b B=BaseR
4 evl1addd.u U=BaseP
5 evl1addd.1 φRCRing
6 evl1addd.2 φYB
7 evl1addd.3 φMUOMY=V
8 evl1addd.4 φNUONY=W
9 evl1muld.t ˙=P
10 evl1muld.s ·˙=R
11 eqid R𝑠B=R𝑠B
12 1 2 11 3 evl1rhm RCRingOPRingHomR𝑠B
13 5 12 syl φOPRingHomR𝑠B
14 rhmrcl1 OPRingHomR𝑠BPRing
15 13 14 syl φPRing
16 7 simpld φMU
17 8 simpld φNU
18 4 9 ringcl PRingMUNUM˙NU
19 15 16 17 18 syl3anc φM˙NU
20 eqid R𝑠B=R𝑠B
21 4 9 20 rhmmul OPRingHomR𝑠BMUNUOM˙N=OMR𝑠BON
22 13 16 17 21 syl3anc φOM˙N=OMR𝑠BON
23 eqid BaseR𝑠B=BaseR𝑠B
24 3 fvexi BV
25 24 a1i φBV
26 4 23 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
27 13 26 syl φO:UBaseR𝑠B
28 27 16 ffvelcdmd φOMBaseR𝑠B
29 27 17 ffvelcdmd φONBaseR𝑠B
30 11 23 5 25 28 29 10 20 pwsmulrval φOMR𝑠BON=OM·˙fON
31 22 30 eqtrd φOM˙N=OM·˙fON
32 31 fveq1d φOM˙NY=OM·˙fONY
33 11 3 23 5 25 28 pwselbas φOM:BB
34 33 ffnd φOMFnB
35 11 3 23 5 25 29 pwselbas φON:BB
36 35 ffnd φONFnB
37 fnfvof OMFnBONFnBBVYBOM·˙fONY=OMY·˙ONY
38 34 36 25 6 37 syl22anc φOM·˙fONY=OMY·˙ONY
39 7 simprd φOMY=V
40 8 simprd φONY=W
41 39 40 oveq12d φOMY·˙ONY=V·˙W
42 32 38 41 3eqtrd φOM˙NY=V·˙W
43 19 42 jca φM˙NUOM˙NY=V·˙W