Metamath Proof Explorer


Theorem evl1rhm

Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015) (Proof shortened by AV, 13-Sep-2019)

Ref Expression
Hypotheses evl1rhm.q O = eval 1 R
evl1rhm.w P = Poly 1 R
evl1rhm.t T = R 𝑠 B
evl1rhm.b B = Base R
Assertion evl1rhm R CRing O P RingHom T

Proof

Step Hyp Ref Expression
1 evl1rhm.q O = eval 1 R
2 evl1rhm.w P = Poly 1 R
3 evl1rhm.t T = R 𝑠 B
4 evl1rhm.b B = Base R
5 eqid 1 𝑜 eval R = 1 𝑜 eval R
6 1 5 4 evl1fval O = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 eval R
7 eqid x B B 1 𝑜 x y B 1 𝑜 × y = x B B 1 𝑜 x y B 1 𝑜 × y
8 4 3 7 evls1rhmlem R CRing x B B 1 𝑜 x y B 1 𝑜 × y R 𝑠 B 1 𝑜 RingHom T
9 1on 1 𝑜 On
10 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
11 eqid R 𝑠 B 1 𝑜 = R 𝑠 B 1 𝑜
12 5 4 10 11 evlrhm 1 𝑜 On R CRing 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
13 9 12 mpan R CRing 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
14 eqidd R CRing Base P = Base P
15 eqidd R CRing Base R 𝑠 B 1 𝑜 = Base R 𝑠 B 1 𝑜
16 eqid Base P = Base P
17 2 16 ply1bas Base P = Base 1 𝑜 mPoly R
18 17 a1i R CRing Base P = Base 1 𝑜 mPoly R
19 eqid + P = + P
20 2 10 19 ply1plusg + P = + 1 𝑜 mPoly R
21 20 a1i R CRing + P = + 1 𝑜 mPoly R
22 21 oveqdr R CRing x Base P y Base P x + P y = x + 1 𝑜 mPoly R y
23 eqidd R CRing x Base R 𝑠 B 1 𝑜 y Base R 𝑠 B 1 𝑜 x + R 𝑠 B 1 𝑜 y = x + R 𝑠 B 1 𝑜 y
24 eqid P = P
25 2 10 24 ply1mulr P = 1 𝑜 mPoly R
26 25 a1i R CRing P = 1 𝑜 mPoly R
27 26 oveqdr R CRing x Base P y Base P x P y = x 1 𝑜 mPoly R y
28 eqidd R CRing x Base R 𝑠 B 1 𝑜 y Base R 𝑠 B 1 𝑜 x R 𝑠 B 1 𝑜 y = x R 𝑠 B 1 𝑜 y
29 14 15 18 15 22 23 27 28 rhmpropd R CRing P RingHom R 𝑠 B 1 𝑜 = 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
30 13 29 eleqtrrd R CRing 1 𝑜 eval R P RingHom R 𝑠 B 1 𝑜
31 rhmco x B B 1 𝑜 x y B 1 𝑜 × y R 𝑠 B 1 𝑜 RingHom T 1 𝑜 eval R P RingHom R 𝑠 B 1 𝑜 x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 eval R P RingHom T
32 8 30 31 syl2anc R CRing x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 eval R P RingHom T
33 6 32 eqeltrid R CRing O P RingHom T