Metamath Proof Explorer


Theorem evl1scad

Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1sca.o O = eval 1 R
evl1sca.p P = Poly 1 R
evl1sca.b B = Base R
evl1sca.a A = algSc P
evl1scad.u U = Base P
evl1scad.1 φ R CRing
evl1scad.2 φ X B
evl1scad.3 φ Y B
Assertion evl1scad φ A X U O A X Y = X

Proof

Step Hyp Ref Expression
1 evl1sca.o O = eval 1 R
2 evl1sca.p P = Poly 1 R
3 evl1sca.b B = Base R
4 evl1sca.a A = algSc P
5 evl1scad.u U = Base P
6 evl1scad.1 φ R CRing
7 evl1scad.2 φ X B
8 evl1scad.3 φ Y B
9 crngring R CRing R Ring
10 2 4 3 5 ply1sclf R Ring A : B U
11 6 9 10 3syl φ A : B U
12 11 7 ffvelrnd φ A X U
13 1 2 3 4 evl1sca R CRing X B O A X = B × X
14 6 7 13 syl2anc φ O A X = B × X
15 14 fveq1d φ O A X Y = B × X Y
16 fvconst2g X B Y B B × X Y = X
17 7 8 16 syl2anc φ B × X Y = X
18 15 17 eqtrd φ O A X Y = X
19 12 18 jca φ A X U O A X Y = X