Metamath Proof Explorer


Theorem evl1scvarpw

Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q = eval 1 R
evl1varpw.w W = Poly 1 R
evl1varpw.g G = mulGrp W
evl1varpw.x X = var 1 R
evl1varpw.b B = Base R
evl1varpw.e × ˙ = G
evl1varpw.r φ R CRing
evl1varpw.n φ N 0
evl1scvarpw.t1 × ˙ = W
evl1scvarpw.a φ A B
evl1scvarpw.s S = R 𝑠 B
evl1scvarpw.t2 ˙ = S
evl1scvarpw.m M = mulGrp S
evl1scvarpw.f F = M
Assertion evl1scvarpw φ Q A × ˙ N × ˙ X = B × A ˙ N F Q X

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q = eval 1 R
2 evl1varpw.w W = Poly 1 R
3 evl1varpw.g G = mulGrp W
4 evl1varpw.x X = var 1 R
5 evl1varpw.b B = Base R
6 evl1varpw.e × ˙ = G
7 evl1varpw.r φ R CRing
8 evl1varpw.n φ N 0
9 evl1scvarpw.t1 × ˙ = W
10 evl1scvarpw.a φ A B
11 evl1scvarpw.s S = R 𝑠 B
12 evl1scvarpw.t2 ˙ = S
13 evl1scvarpw.m M = mulGrp S
14 evl1scvarpw.f F = M
15 2 ply1assa R CRing W AssAlg
16 7 15 syl φ W AssAlg
17 10 5 eleqtrdi φ A Base R
18 2 ply1sca R CRing R = Scalar W
19 18 eqcomd R CRing Scalar W = R
20 7 19 syl φ Scalar W = R
21 20 fveq2d φ Base Scalar W = Base R
22 17 21 eleqtrrd φ A Base Scalar W
23 eqid Base W = Base W
24 3 23 mgpbas Base W = Base G
25 crngring R CRing R Ring
26 7 25 syl φ R Ring
27 2 ply1ring R Ring W Ring
28 26 27 syl φ W Ring
29 3 ringmgp W Ring G Mnd
30 28 29 syl φ G Mnd
31 4 2 23 vr1cl R Ring X Base W
32 26 31 syl φ X Base W
33 24 6 30 8 32 mulgnn0cld φ N × ˙ X Base W
34 eqid algSc W = algSc W
35 eqid Scalar W = Scalar W
36 eqid Base Scalar W = Base Scalar W
37 eqid W = W
38 34 35 36 23 37 9 asclmul1 W AssAlg A Base Scalar W N × ˙ X Base W algSc W A W N × ˙ X = A × ˙ N × ˙ X
39 16 22 33 38 syl3anc φ algSc W A W N × ˙ X = A × ˙ N × ˙ X
40 39 eqcomd φ A × ˙ N × ˙ X = algSc W A W N × ˙ X
41 40 fveq2d φ Q A × ˙ N × ˙ X = Q algSc W A W N × ˙ X
42 1 2 11 5 evl1rhm R CRing Q W RingHom S
43 7 42 syl φ Q W RingHom S
44 2 ply1lmod R Ring W LMod
45 26 44 syl φ W LMod
46 34 35 28 45 36 23 asclf φ algSc W : Base Scalar W Base W
47 46 22 ffvelcdmd φ algSc W A Base W
48 23 37 12 rhmmul Q W RingHom S algSc W A Base W N × ˙ X Base W Q algSc W A W N × ˙ X = Q algSc W A ˙ Q N × ˙ X
49 43 47 33 48 syl3anc φ Q algSc W A W N × ˙ X = Q algSc W A ˙ Q N × ˙ X
50 1 2 5 34 evl1sca R CRing A B Q algSc W A = B × A
51 7 10 50 syl2anc φ Q algSc W A = B × A
52 1 2 3 4 5 6 7 8 evl1varpw φ Q N × ˙ X = N mulGrp R 𝑠 B Q X
53 11 fveq2i mulGrp S = mulGrp R 𝑠 B
54 13 53 eqtri M = mulGrp R 𝑠 B
55 54 fveq2i M = mulGrp R 𝑠 B
56 14 55 eqtri F = mulGrp R 𝑠 B
57 56 a1i φ F = mulGrp R 𝑠 B
58 57 eqcomd φ mulGrp R 𝑠 B = F
59 58 oveqd φ N mulGrp R 𝑠 B Q X = N F Q X
60 52 59 eqtrd φ Q N × ˙ X = N F Q X
61 51 60 oveq12d φ Q algSc W A ˙ Q N × ˙ X = B × A ˙ N F Q X
62 41 49 61 3eqtrd φ Q A × ˙ N × ˙ X = B × A ˙ N F Q X