Metamath Proof Explorer


Theorem evl1vard

Description: Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1var.q O = eval 1 R
evl1var.v X = var 1 R
evl1var.b B = Base R
evl1vard.p P = Poly 1 R
evl1vard.u U = Base P
evl1vard.1 φ R CRing
evl1vard.2 φ Y B
Assertion evl1vard φ X U O X Y = Y

Proof

Step Hyp Ref Expression
1 evl1var.q O = eval 1 R
2 evl1var.v X = var 1 R
3 evl1var.b B = Base R
4 evl1vard.p P = Poly 1 R
5 evl1vard.u U = Base P
6 evl1vard.1 φ R CRing
7 evl1vard.2 φ Y B
8 crngring R CRing R Ring
9 2 4 5 vr1cl R Ring X U
10 6 8 9 3syl φ X U
11 1 2 3 evl1var R CRing O X = I B
12 6 11 syl φ O X = I B
13 12 fveq1d φ O X Y = I B Y
14 fvresi Y B I B Y = Y
15 7 14 syl φ I B Y = Y
16 13 15 eqtrd φ O X Y = Y
17 10 16 jca φ X U O X Y = Y