Metamath Proof Explorer


Theorem evl1varpw

Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd , the proof is shorter using evls1varpw instead of proving it directly. (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q = eval 1 R
evl1varpw.w W = Poly 1 R
evl1varpw.g G = mulGrp W
evl1varpw.x X = var 1 R
evl1varpw.b B = Base R
evl1varpw.e × ˙ = G
evl1varpw.r φ R CRing
evl1varpw.n φ N 0
Assertion evl1varpw φ Q N × ˙ X = N mulGrp R 𝑠 B Q X

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q = eval 1 R
2 evl1varpw.w W = Poly 1 R
3 evl1varpw.g G = mulGrp W
4 evl1varpw.x X = var 1 R
5 evl1varpw.b B = Base R
6 evl1varpw.e × ˙ = G
7 evl1varpw.r φ R CRing
8 evl1varpw.n φ N 0
9 1 5 evl1fval1 Q = R evalSub 1 B
10 9 a1i φ Q = R evalSub 1 B
11 2 fveq2i mulGrp W = mulGrp Poly 1 R
12 3 11 eqtri G = mulGrp Poly 1 R
13 12 fveq2i G = mulGrp Poly 1 R
14 6 13 eqtri × ˙ = mulGrp Poly 1 R
15 5 ressid R CRing R 𝑠 B = R
16 7 15 syl φ R 𝑠 B = R
17 16 eqcomd φ R = R 𝑠 B
18 17 fveq2d φ Poly 1 R = Poly 1 R 𝑠 B
19 18 fveq2d φ mulGrp Poly 1 R = mulGrp Poly 1 R 𝑠 B
20 19 fveq2d φ mulGrp Poly 1 R = mulGrp Poly 1 R 𝑠 B
21 14 20 syl5eq φ × ˙ = mulGrp Poly 1 R 𝑠 B
22 eqidd φ N = N
23 17 fveq2d φ var 1 R = var 1 R 𝑠 B
24 4 23 syl5eq φ X = var 1 R 𝑠 B
25 21 22 24 oveq123d φ N × ˙ X = N mulGrp Poly 1 R 𝑠 B var 1 R 𝑠 B
26 10 25 fveq12d φ Q N × ˙ X = R evalSub 1 B N mulGrp Poly 1 R 𝑠 B var 1 R 𝑠 B
27 eqid R evalSub 1 B = R evalSub 1 B
28 eqid R 𝑠 B = R 𝑠 B
29 eqid Poly 1 R 𝑠 B = Poly 1 R 𝑠 B
30 eqid mulGrp Poly 1 R 𝑠 B = mulGrp Poly 1 R 𝑠 B
31 eqid var 1 R 𝑠 B = var 1 R 𝑠 B
32 eqid mulGrp Poly 1 R 𝑠 B = mulGrp Poly 1 R 𝑠 B
33 crngring R CRing R Ring
34 5 subrgid R Ring B SubRing R
35 7 33 34 3syl φ B SubRing R
36 27 28 29 30 31 5 32 7 35 8 evls1varpw φ R evalSub 1 B N mulGrp Poly 1 R 𝑠 B var 1 R 𝑠 B = N mulGrp R 𝑠 B R evalSub 1 B var 1 R 𝑠 B
37 9 eqcomi R evalSub 1 B = Q
38 37 a1i φ R evalSub 1 B = Q
39 24 eqcomd φ var 1 R 𝑠 B = X
40 38 39 fveq12d φ R evalSub 1 B var 1 R 𝑠 B = Q X
41 40 oveq2d φ N mulGrp R 𝑠 B R evalSub 1 B var 1 R 𝑠 B = N mulGrp R 𝑠 B Q X
42 26 36 41 3eqtrd φ Q N × ˙ X = N mulGrp R 𝑠 B Q X