Metamath Proof Explorer


Theorem evladdval

Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evladdval.q Q = I eval S
evladdval.p P = I mPoly S
evladdval.k K = Base S
evladdval.b B = Base P
evladdval.g ˙ = + P
evladdval.f + ˙ = + S
evladdval.i φ I Z
evladdval.s φ S CRing
evladdval.a φ A K I
evladdval.m φ M B Q M A = V
evladdval.n φ N B Q N A = W
Assertion evladdval φ M ˙ N B Q M ˙ N A = V + ˙ W

Proof

Step Hyp Ref Expression
1 evladdval.q Q = I eval S
2 evladdval.p P = I mPoly S
3 evladdval.k K = Base S
4 evladdval.b B = Base P
5 evladdval.g ˙ = + P
6 evladdval.f + ˙ = + S
7 evladdval.i φ I Z
8 evladdval.s φ S CRing
9 evladdval.a φ A K I
10 evladdval.m φ M B Q M A = V
11 evladdval.n φ N B Q N A = W
12 eqid S 𝑠 K I = S 𝑠 K I
13 1 3 2 12 evlrhm I Z S CRing Q P RingHom S 𝑠 K I
14 7 8 13 syl2anc φ Q P RingHom S 𝑠 K I
15 rhmghm Q P RingHom S 𝑠 K I Q P GrpHom S 𝑠 K I
16 14 15 syl φ Q P GrpHom S 𝑠 K I
17 ghmgrp1 Q P GrpHom S 𝑠 K I P Grp
18 16 17 syl φ P Grp
19 10 simpld φ M B
20 11 simpld φ N B
21 4 5 18 19 20 grpcld φ M ˙ N B
22 eqid + S 𝑠 K I = + S 𝑠 K I
23 4 5 22 ghmlin Q P GrpHom S 𝑠 K I M B N B Q M ˙ N = Q M + S 𝑠 K I Q N
24 16 19 20 23 syl3anc φ Q M ˙ N = Q M + S 𝑠 K I Q N
25 eqid Base S 𝑠 K I = Base S 𝑠 K I
26 ovexd φ K I V
27 4 25 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
28 14 27 syl φ Q : B Base S 𝑠 K I
29 28 19 ffvelcdmd φ Q M Base S 𝑠 K I
30 28 20 ffvelcdmd φ Q N Base S 𝑠 K I
31 12 25 8 26 29 30 6 22 pwsplusgval φ Q M + S 𝑠 K I Q N = Q M + ˙ f Q N
32 24 31 eqtrd φ Q M ˙ N = Q M + ˙ f Q N
33 32 fveq1d φ Q M ˙ N A = Q M + ˙ f Q N A
34 12 3 25 8 26 29 pwselbas φ Q M : K I K
35 34 ffnd φ Q M Fn K I
36 12 3 25 8 26 30 pwselbas φ Q N : K I K
37 36 ffnd φ Q N Fn K I
38 fnfvof Q M Fn K I Q N Fn K I K I V A K I Q M + ˙ f Q N A = Q M A + ˙ Q N A
39 35 37 26 9 38 syl22anc φ Q M + ˙ f Q N A = Q M A + ˙ Q N A
40 10 simprd φ Q M A = V
41 11 simprd φ Q N A = W
42 40 41 oveq12d φ Q M A + ˙ Q N A = V + ˙ W
43 33 39 42 3eqtrd φ Q M ˙ N A = V + ˙ W
44 21 43 jca φ M ˙ N B Q M ˙ N A = V + ˙ W