Metamath Proof Explorer


Theorem evlcl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlcl.q Q = I eval R
evlcl.p P = I mPoly R
evlcl.b B = Base P
evlcl.k K = Base R
evlcl.i φ I V
evlcl.r φ R CRing
evlcl.f φ F B
evlcl.a φ A K I
Assertion evlcl φ Q F A K

Proof

Step Hyp Ref Expression
1 evlcl.q Q = I eval R
2 evlcl.p P = I mPoly R
3 evlcl.b B = Base P
4 evlcl.k K = Base R
5 evlcl.i φ I V
6 evlcl.r φ R CRing
7 evlcl.f φ F B
8 evlcl.a φ A K I
9 eqid R 𝑠 K I = R 𝑠 K I
10 eqid Base R 𝑠 K I = Base R 𝑠 K I
11 ovexd φ K I V
12 1 4 2 9 evlrhm I V R CRing Q P RingHom R 𝑠 K I
13 5 6 12 syl2anc φ Q P RingHom R 𝑠 K I
14 3 10 rhmf Q P RingHom R 𝑠 K I Q : B Base R 𝑠 K I
15 13 14 syl φ Q : B Base R 𝑠 K I
16 15 7 ffvelcdmd φ Q F Base R 𝑠 K I
17 9 4 10 6 11 16 pwselbas φ Q F : K I K
18 17 8 ffvelcdmd φ Q F A K