Metamath Proof Explorer


Theorem evlmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025)

Ref Expression
Hypotheses evlmulval.q Q = I eval S
evlmulval.p P = I mPoly S
evlmulval.k K = Base S
evlmulval.b B = Base P
evlmulval.g ˙ = P
evlmulval.f · ˙ = S
evlmulval.i φ I Z
evlmulval.s φ S CRing
evlmulval.a φ A K I
evlmulval.m φ M B Q M A = V
evlmulval.n φ N B Q N A = W
Assertion evlmulval φ M ˙ N B Q M ˙ N A = V · ˙ W

Proof

Step Hyp Ref Expression
1 evlmulval.q Q = I eval S
2 evlmulval.p P = I mPoly S
3 evlmulval.k K = Base S
4 evlmulval.b B = Base P
5 evlmulval.g ˙ = P
6 evlmulval.f · ˙ = S
7 evlmulval.i φ I Z
8 evlmulval.s φ S CRing
9 evlmulval.a φ A K I
10 evlmulval.m φ M B Q M A = V
11 evlmulval.n φ N B Q N A = W
12 eqid S 𝑠 K I = S 𝑠 K I
13 1 3 2 12 evlrhm I Z S CRing Q P RingHom S 𝑠 K I
14 7 8 13 syl2anc φ Q P RingHom S 𝑠 K I
15 rhmrcl1 Q P RingHom S 𝑠 K I P Ring
16 14 15 syl φ P Ring
17 10 simpld φ M B
18 11 simpld φ N B
19 4 5 16 17 18 ringcld φ M ˙ N B
20 eqid S 𝑠 K I = S 𝑠 K I
21 4 5 20 rhmmul Q P RingHom S 𝑠 K I M B N B Q M ˙ N = Q M S 𝑠 K I Q N
22 14 17 18 21 syl3anc φ Q M ˙ N = Q M S 𝑠 K I Q N
23 eqid Base S 𝑠 K I = Base S 𝑠 K I
24 ovexd φ K I V
25 4 23 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
26 14 25 syl φ Q : B Base S 𝑠 K I
27 26 17 ffvelcdmd φ Q M Base S 𝑠 K I
28 26 18 ffvelcdmd φ Q N Base S 𝑠 K I
29 12 23 8 24 27 28 6 20 pwsmulrval φ Q M S 𝑠 K I Q N = Q M · ˙ f Q N
30 22 29 eqtrd φ Q M ˙ N = Q M · ˙ f Q N
31 30 fveq1d φ Q M ˙ N A = Q M · ˙ f Q N A
32 12 3 23 8 24 27 pwselbas φ Q M : K I K
33 32 ffnd φ Q M Fn K I
34 12 3 23 8 24 28 pwselbas φ Q N : K I K
35 34 ffnd φ Q N Fn K I
36 fnfvof Q M Fn K I Q N Fn K I K I V A K I Q M · ˙ f Q N A = Q M A · ˙ Q N A
37 33 35 24 9 36 syl22anc φ Q M · ˙ f Q N A = Q M A · ˙ Q N A
38 10 simprd φ Q M A = V
39 11 simprd φ Q N A = W
40 38 39 oveq12d φ Q M A · ˙ Q N A = V · ˙ W
41 31 37 40 3eqtrd φ Q M ˙ N A = V · ˙ W
42 19 41 jca φ M ˙ N B Q M ˙ N A = V · ˙ W