Metamath Proof Explorer


Theorem evls1addd

Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025)

Ref Expression
Hypotheses ressply1evl2.q Q = S evalSub 1 R
ressply1evl2.k K = Base S
ressply1evl2.w W = Poly 1 U
ressply1evl2.u U = S 𝑠 R
ressply1evl2.b B = Base W
evls1addd.1 ˙ = + W
evls1addd.2 + ˙ = + S
evls1addd.s φ S CRing
evls1addd.r φ R SubRing S
evls1addd.m φ M B
evls1addd.n φ N B
evls1addd.y φ C K
Assertion evls1addd φ Q M ˙ N C = Q M C + ˙ Q N C

Proof

Step Hyp Ref Expression
1 ressply1evl2.q Q = S evalSub 1 R
2 ressply1evl2.k K = Base S
3 ressply1evl2.w W = Poly 1 U
4 ressply1evl2.u U = S 𝑠 R
5 ressply1evl2.b B = Base W
6 evls1addd.1 ˙ = + W
7 evls1addd.2 + ˙ = + S
8 evls1addd.s φ S CRing
9 evls1addd.r φ R SubRing S
10 evls1addd.m φ M B
11 evls1addd.n φ N B
12 evls1addd.y φ C K
13 id φ φ
14 eqid Poly 1 S = Poly 1 S
15 eqid Poly 1 S 𝑠 B = Poly 1 S 𝑠 B
16 14 4 3 5 9 15 ressply1add φ M B N B M + W N = M + Poly 1 S 𝑠 B N
17 13 10 11 16 syl12anc φ M + W N = M + Poly 1 S 𝑠 B N
18 6 oveqi M ˙ N = M + W N
19 5 fvexi B V
20 eqid + Poly 1 S = + Poly 1 S
21 15 20 ressplusg B V + Poly 1 S = + Poly 1 S 𝑠 B
22 19 21 ax-mp + Poly 1 S = + Poly 1 S 𝑠 B
23 22 oveqi M + Poly 1 S N = M + Poly 1 S 𝑠 B N
24 17 18 23 3eqtr4g φ M ˙ N = M + Poly 1 S N
25 24 fveq2d φ eval 1 S M ˙ N = eval 1 S M + Poly 1 S N
26 25 fveq1d φ eval 1 S M ˙ N C = eval 1 S M + Poly 1 S N C
27 eqid eval 1 S = eval 1 S
28 1 2 3 4 5 27 8 9 ressply1evl φ Q = eval 1 S B
29 28 fveq1d φ Q M ˙ N = eval 1 S B M ˙ N
30 4 subrgring R SubRing S U Ring
31 3 ply1ring U Ring W Ring
32 9 30 31 3syl φ W Ring
33 32 ringgrpd φ W Grp
34 5 6 33 10 11 grpcld φ M ˙ N B
35 34 fvresd φ eval 1 S B M ˙ N = eval 1 S M ˙ N
36 29 35 eqtr2d φ eval 1 S M ˙ N = Q M ˙ N
37 36 fveq1d φ eval 1 S M ˙ N C = Q M ˙ N C
38 eqid Base Poly 1 S = Base Poly 1 S
39 eqid PwSer 1 U = PwSer 1 U
40 eqid Base PwSer 1 U = Base PwSer 1 U
41 14 4 3 5 9 39 40 38 ressply1bas2 φ B = Base PwSer 1 U Base Poly 1 S
42 inss2 Base PwSer 1 U Base Poly 1 S Base Poly 1 S
43 41 42 eqsstrdi φ B Base Poly 1 S
44 43 10 sseldd φ M Base Poly 1 S
45 28 fveq1d φ Q M = eval 1 S B M
46 10 fvresd φ eval 1 S B M = eval 1 S M
47 45 46 eqtr2d φ eval 1 S M = Q M
48 47 fveq1d φ eval 1 S M C = Q M C
49 44 48 jca φ M Base Poly 1 S eval 1 S M C = Q M C
50 43 11 sseldd φ N Base Poly 1 S
51 28 fveq1d φ Q N = eval 1 S B N
52 11 fvresd φ eval 1 S B N = eval 1 S N
53 51 52 eqtr2d φ eval 1 S N = Q N
54 53 fveq1d φ eval 1 S N C = Q N C
55 50 54 jca φ N Base Poly 1 S eval 1 S N C = Q N C
56 27 14 2 38 8 12 49 55 20 7 evl1addd φ M + Poly 1 S N Base Poly 1 S eval 1 S M + Poly 1 S N C = Q M C + ˙ Q N C
57 56 simprd φ eval 1 S M + Poly 1 S N C = Q M C + ˙ Q N C
58 26 37 57 3eqtr3d φ Q M ˙ N C = Q M C + ˙ Q N C