Metamath Proof Explorer


Theorem evls1dm

Description: The domain of the subring polynomial evaluation function. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses evls1fn.o O = R evalSub 1 S
evls1fn.p P = Poly 1 R 𝑠 S
evls1fn.u U = Base P
evls1fn.1 φ R CRing
evls1fn.2 φ S SubRing R
Assertion evls1dm φ dom O = U

Proof

Step Hyp Ref Expression
1 evls1fn.o O = R evalSub 1 S
2 evls1fn.p P = Poly 1 R 𝑠 S
3 evls1fn.u U = Base P
4 evls1fn.1 φ R CRing
5 evls1fn.2 φ S SubRing R
6 eqid Base R = Base R
7 eqid R 𝑠 Base R = R 𝑠 Base R
8 eqid R 𝑠 S = R 𝑠 S
9 1 6 7 8 2 evls1rhm R CRing S SubRing R O P RingHom R 𝑠 Base R
10 4 5 9 syl2anc φ O P RingHom R 𝑠 Base R
11 eqid Base R 𝑠 Base R = Base R 𝑠 Base R
12 3 11 rhmf O P RingHom R 𝑠 Base R O : U Base R 𝑠 Base R
13 10 12 syl φ O : U Base R 𝑠 Base R
14 13 fdmd φ dom O = U