Metamath Proof Explorer


Theorem evls1expd

Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses evls1expd.q Q = S evalSub 1 R
evls1expd.k K = Base S
evls1expd.w W = Poly 1 U
evls1expd.u U = S 𝑠 R
evls1expd.b B = Base W
evls1expd.s φ S CRing
evls1expd.r φ R SubRing S
evls1expd.1 ˙ = mulGrp W
evls1expd.2 × ˙ = mulGrp S
evls1expd.n φ N 0
evls1expd.m φ M B
evls1expd.c φ C K
Assertion evls1expd φ Q N ˙ M C = N × ˙ Q M C

Proof

Step Hyp Ref Expression
1 evls1expd.q Q = S evalSub 1 R
2 evls1expd.k K = Base S
3 evls1expd.w W = Poly 1 U
4 evls1expd.u U = S 𝑠 R
5 evls1expd.b B = Base W
6 evls1expd.s φ S CRing
7 evls1expd.r φ R SubRing S
8 evls1expd.1 ˙ = mulGrp W
9 evls1expd.2 × ˙ = mulGrp S
10 evls1expd.n φ N 0
11 evls1expd.m φ M B
12 evls1expd.c φ C K
13 eqid mulGrp W = mulGrp W
14 1 4 3 13 2 5 8 6 7 10 11 evls1pw φ Q N ˙ M = N mulGrp S 𝑠 K Q M
15 14 fveq1d φ Q N ˙ M C = N mulGrp S 𝑠 K Q M C
16 eqid S 𝑠 K = S 𝑠 K
17 eqid Base S 𝑠 K = Base S 𝑠 K
18 eqid mulGrp S 𝑠 K = mulGrp S 𝑠 K
19 eqid mulGrp S = mulGrp S
20 eqid mulGrp S 𝑠 K = mulGrp S 𝑠 K
21 6 crngringd φ S Ring
22 2 fvexi K V
23 22 a1i φ K V
24 1 2 16 4 3 evls1rhm S CRing R SubRing S Q W RingHom S 𝑠 K
25 6 7 24 syl2anc φ Q W RingHom S 𝑠 K
26 5 17 rhmf Q W RingHom S 𝑠 K Q : B Base S 𝑠 K
27 25 26 syl φ Q : B Base S 𝑠 K
28 27 11 ffvelcdmd φ Q M Base S 𝑠 K
29 16 17 18 19 20 9 21 23 10 28 12 pwsexpg φ N mulGrp S 𝑠 K Q M C = N × ˙ Q M C
30 15 29 eqtrd φ Q N ˙ M C = N × ˙ Q M C