Metamath Proof Explorer


Theorem evls1fpws

Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)

Ref Expression
Hypotheses ressply1evl2.q Q = S evalSub 1 R
ressply1evl2.k K = Base S
ressply1evl2.w W = Poly 1 U
ressply1evl2.u U = S 𝑠 R
ressply1evl2.b B = Base W
evls1fpws.s φ S CRing
evls1fpws.r φ R SubRing S
evls1fpws.y φ M B
evls1fpws.1 · ˙ = S
evls1fpws.2 × ˙ = mulGrp S
evls1fpws.a A = coe 1 M
Assertion evls1fpws φ Q M = x K S k 0 A k · ˙ k × ˙ x

Proof

Step Hyp Ref Expression
1 ressply1evl2.q Q = S evalSub 1 R
2 ressply1evl2.k K = Base S
3 ressply1evl2.w W = Poly 1 U
4 ressply1evl2.u U = S 𝑠 R
5 ressply1evl2.b B = Base W
6 evls1fpws.s φ S CRing
7 evls1fpws.r φ R SubRing S
8 evls1fpws.y φ M B
9 evls1fpws.1 · ˙ = S
10 evls1fpws.2 × ˙ = mulGrp S
11 evls1fpws.a A = coe 1 M
12 4 subrgring R SubRing S U Ring
13 7 12 syl φ U Ring
14 eqid var 1 U = var 1 U
15 eqid W = W
16 eqid mulGrp W = mulGrp W
17 eqid mulGrp W = mulGrp W
18 3 14 5 15 16 17 11 ply1coe U Ring M B M = W k 0 A k W k mulGrp W var 1 U
19 13 8 18 syl2anc φ M = W k 0 A k W k mulGrp W var 1 U
20 19 fveq2d φ Q M = Q W k 0 A k W k mulGrp W var 1 U
21 eqid 0 W = 0 W
22 eqid S 𝑠 K = S 𝑠 K
23 3 ply1lmod U Ring W LMod
24 13 23 syl φ W LMod
25 24 adantr φ k 0 W LMod
26 eqid Base U = Base U
27 11 5 3 26 coe1fvalcl M B k 0 A k Base U
28 8 27 sylan φ k 0 A k Base U
29 3 ply1sca U Ring U = Scalar W
30 13 29 syl φ U = Scalar W
31 30 fveq2d φ Base U = Base Scalar W
32 31 adantr φ k 0 Base U = Base Scalar W
33 28 32 eleqtrd φ k 0 A k Base Scalar W
34 16 5 mgpbas B = Base mulGrp W
35 3 ply1ring U Ring W Ring
36 13 35 syl φ W Ring
37 36 adantr φ k 0 W Ring
38 16 ringmgp W Ring mulGrp W Mnd
39 37 38 syl φ k 0 mulGrp W Mnd
40 simpr φ k 0 k 0
41 13 adantr φ k 0 U Ring
42 14 3 5 vr1cl U Ring var 1 U B
43 41 42 syl φ k 0 var 1 U B
44 34 17 39 40 43 mulgnn0cld φ k 0 k mulGrp W var 1 U B
45 eqid Scalar W = Scalar W
46 eqid Base Scalar W = Base Scalar W
47 5 45 15 46 lmodvscl W LMod A k Base Scalar W k mulGrp W var 1 U B A k W k mulGrp W var 1 U B
48 25 33 44 47 syl3anc φ k 0 A k W k mulGrp W var 1 U B
49 ssidd φ 0 0
50 fvexd φ 0 W V
51 fveq2 k = j A k = A j
52 oveq1 k = j k mulGrp W var 1 U = j mulGrp W var 1 U
53 51 52 oveq12d k = j A k W k mulGrp W var 1 U = A j W j mulGrp W var 1 U
54 eqid 0 U = 0 U
55 11 5 3 54 coe1ae0 M B i 0 j 0 i < j A j = 0 U
56 8 55 syl φ i 0 j 0 i < j A j = 0 U
57 simpr φ i 0 j 0 A j = 0 U A j = 0 U
58 30 ad3antrrr φ i 0 j 0 A j = 0 U U = Scalar W
59 58 fveq2d φ i 0 j 0 A j = 0 U 0 U = 0 Scalar W
60 57 59 eqtrd φ i 0 j 0 A j = 0 U A j = 0 Scalar W
61 60 oveq1d φ i 0 j 0 A j = 0 U A j W j mulGrp W var 1 U = 0 Scalar W W j mulGrp W var 1 U
62 24 ad3antrrr φ i 0 j 0 A j = 0 U W LMod
63 36 38 syl φ mulGrp W Mnd
64 63 adantr φ j 0 mulGrp W Mnd
65 simpr φ j 0 j 0
66 13 42 syl φ var 1 U B
67 66 adantr φ j 0 var 1 U B
68 34 17 64 65 67 mulgnn0cld φ j 0 j mulGrp W var 1 U B
69 68 ad4ant13 φ i 0 j 0 A j = 0 U j mulGrp W var 1 U B
70 eqid 0 Scalar W = 0 Scalar W
71 5 45 15 70 21 lmod0vs W LMod j mulGrp W var 1 U B 0 Scalar W W j mulGrp W var 1 U = 0 W
72 62 69 71 syl2anc φ i 0 j 0 A j = 0 U 0 Scalar W W j mulGrp W var 1 U = 0 W
73 61 72 eqtrd φ i 0 j 0 A j = 0 U A j W j mulGrp W var 1 U = 0 W
74 73 ex φ i 0 j 0 A j = 0 U A j W j mulGrp W var 1 U = 0 W
75 74 imim2d φ i 0 j 0 i < j A j = 0 U i < j A j W j mulGrp W var 1 U = 0 W
76 75 ralimdva φ i 0 j 0 i < j A j = 0 U j 0 i < j A j W j mulGrp W var 1 U = 0 W
77 76 reximdva φ i 0 j 0 i < j A j = 0 U i 0 j 0 i < j A j W j mulGrp W var 1 U = 0 W
78 56 77 mpd φ i 0 j 0 i < j A j W j mulGrp W var 1 U = 0 W
79 50 48 53 78 mptnn0fsuppd φ finSupp 0 W k 0 A k W k mulGrp W var 1 U
80 1 2 3 21 4 22 5 6 7 48 49 79 evls1gsumadd φ Q W k 0 A k W k mulGrp W var 1 U = S 𝑠 K k 0 Q A k W k mulGrp W var 1 U
81 1 2 22 4 3 evls1rhm S CRing R SubRing S Q W RingHom S 𝑠 K
82 6 7 81 syl2anc φ Q W RingHom S 𝑠 K
83 82 adantr φ k 0 Q W RingHom S 𝑠 K
84 eqid algSc W = algSc W
85 84 45 36 24 46 5 asclf φ algSc W : Base Scalar W B
86 85 adantr φ k 0 algSc W : Base Scalar W B
87 86 33 ffvelcdmd φ k 0 algSc W A k B
88 eqid W = W
89 eqid S 𝑠 K = S 𝑠 K
90 5 88 89 rhmmul Q W RingHom S 𝑠 K algSc W A k B k mulGrp W var 1 U B Q algSc W A k W k mulGrp W var 1 U = Q algSc W A k S 𝑠 K Q k mulGrp W var 1 U
91 83 87 44 90 syl3anc φ k 0 Q algSc W A k W k mulGrp W var 1 U = Q algSc W A k S 𝑠 K Q k mulGrp W var 1 U
92 4 subrgcrng S CRing R SubRing S U CRing
93 6 7 92 syl2anc φ U CRing
94 3 ply1assa U CRing W AssAlg
95 93 94 syl φ W AssAlg
96 95 adantr φ k 0 W AssAlg
97 84 45 46 5 88 15 asclmul1 W AssAlg A k Base Scalar W k mulGrp W var 1 U B algSc W A k W k mulGrp W var 1 U = A k W k mulGrp W var 1 U
98 96 33 44 97 syl3anc φ k 0 algSc W A k W k mulGrp W var 1 U = A k W k mulGrp W var 1 U
99 98 fveq2d φ k 0 Q algSc W A k W k mulGrp W var 1 U = Q A k W k mulGrp W var 1 U
100 eqid Base S 𝑠 K = Base S 𝑠 K
101 6 adantr φ k 0 S CRing
102 2 fvexi K V
103 102 a1i φ k 0 K V
104 5 100 rhmf Q W RingHom S 𝑠 K Q : B Base S 𝑠 K
105 83 104 syl φ k 0 Q : B Base S 𝑠 K
106 105 87 ffvelcdmd φ k 0 Q algSc W A k Base S 𝑠 K
107 105 44 ffvelcdmd φ k 0 Q k mulGrp W var 1 U Base S 𝑠 K
108 22 100 101 103 106 107 9 89 pwsmulrval φ k 0 Q algSc W A k S 𝑠 K Q k mulGrp W var 1 U = Q algSc W A k · ˙ f Q k mulGrp W var 1 U
109 22 2 100 101 103 106 pwselbas φ k 0 Q algSc W A k : K K
110 109 ffnd φ k 0 Q algSc W A k Fn K
111 22 2 100 101 103 107 pwselbas φ k 0 Q k mulGrp W var 1 U : K K
112 111 ffnd φ k 0 Q k mulGrp W var 1 U Fn K
113 inidm K K = K
114 6 ad2antrr φ k 0 x K S CRing
115 7 ad2antrr φ k 0 x K R SubRing S
116 2 subrgss R SubRing S R K
117 7 116 syl φ R K
118 4 2 ressbas2 R K R = Base U
119 117 118 syl φ R = Base U
120 119 adantr φ k 0 R = Base U
121 28 120 eleqtrrd φ k 0 A k R
122 121 adantr φ k 0 x K A k R
123 simpr φ k 0 x K x K
124 1 3 4 2 84 114 115 122 123 evls1scafv φ k 0 x K Q algSc W A k x = A k
125 simplr φ k 0 x K k 0
126 1 4 3 14 2 17 10 114 115 125 123 evls1varpwval φ k 0 x K Q k mulGrp W var 1 U x = k × ˙ x
127 110 112 103 103 113 124 126 offval φ k 0 Q algSc W A k · ˙ f Q k mulGrp W var 1 U = x K A k · ˙ k × ˙ x
128 108 127 eqtrd φ k 0 Q algSc W A k S 𝑠 K Q k mulGrp W var 1 U = x K A k · ˙ k × ˙ x
129 91 99 128 3eqtr3d φ k 0 Q A k W k mulGrp W var 1 U = x K A k · ˙ k × ˙ x
130 129 mpteq2dva φ k 0 Q A k W k mulGrp W var 1 U = k 0 x K A k · ˙ k × ˙ x
131 130 oveq2d φ S 𝑠 K k 0 Q A k W k mulGrp W var 1 U = S 𝑠 K k 0 x K A k · ˙ k × ˙ x
132 eqid 0 S 𝑠 K = 0 S 𝑠 K
133 102 a1i φ K V
134 nn0ex 0 V
135 134 a1i φ 0 V
136 6 crngringd φ S Ring
137 136 ringcmnd φ S CMnd
138 136 ad2antrr φ k 0 x K S Ring
139 7 adantr φ k 0 R SubRing S
140 139 116 syl φ k 0 R K
141 140 121 sseldd φ k 0 A k K
142 141 adantr φ k 0 x K A k K
143 eqid mulGrp S = mulGrp S
144 143 2 mgpbas K = Base mulGrp S
145 143 ringmgp S Ring mulGrp S Mnd
146 136 145 syl φ mulGrp S Mnd
147 146 ad2antrr φ k 0 x K mulGrp S Mnd
148 144 10 147 125 123 mulgnn0cld φ k 0 x K k × ˙ x K
149 2 9 138 142 148 ringcld φ k 0 x K A k · ˙ k × ˙ x K
150 149 3impa φ k 0 x K A k · ˙ k × ˙ x K
151 150 3com23 φ x K k 0 A k · ˙ k × ˙ x K
152 151 3expb φ x K k 0 A k · ˙ k × ˙ x K
153 135 mptexd φ k 0 x K A k · ˙ k × ˙ x V
154 funmpt Fun k 0 x K A k · ˙ k × ˙ x
155 154 a1i φ Fun k 0 x K A k · ˙ k × ˙ x
156 fvexd φ 0 S 𝑠 K V
157 11 5 3 54 coe1sfi M B finSupp 0 U A
158 8 157 syl φ finSupp 0 U A
159 158 fsuppimpd φ A supp 0 U Fin
160 11 5 3 26 coe1f M B A : 0 Base U
161 8 160 syl φ A : 0 Base U
162 161 ffnd φ A Fn 0
163 162 adantr φ k 0 supp 0 U A A Fn 0
164 134 a1i φ k 0 supp 0 U A 0 V
165 fvexd φ k 0 supp 0 U A 0 U V
166 simpr φ k 0 supp 0 U A k 0 supp 0 U A
167 163 164 165 166 fvdifsupp φ k 0 supp 0 U A A k = 0 U
168 eqid 0 S = 0 S
169 4 168 subrg0 R SubRing S 0 S = 0 U
170 7 169 syl φ 0 S = 0 U
171 170 adantr φ k 0 supp 0 U A 0 S = 0 U
172 167 171 eqtr4d φ k 0 supp 0 U A A k = 0 S
173 172 adantr φ k 0 supp 0 U A x K A k = 0 S
174 173 oveq1d φ k 0 supp 0 U A x K A k · ˙ k × ˙ x = 0 S · ˙ k × ˙ x
175 136 ad2antrr φ k 0 supp 0 U A x K S Ring
176 175 145 syl φ k 0 supp 0 U A x K mulGrp S Mnd
177 simplr φ k 0 supp 0 U A x K k 0 supp 0 U A
178 177 eldifad φ k 0 supp 0 U A x K k 0
179 simpr φ k 0 supp 0 U A x K x K
180 144 10 176 178 179 mulgnn0cld φ k 0 supp 0 U A x K k × ˙ x K
181 2 9 168 ringlz S Ring k × ˙ x K 0 S · ˙ k × ˙ x = 0 S
182 175 180 181 syl2anc φ k 0 supp 0 U A x K 0 S · ˙ k × ˙ x = 0 S
183 174 182 eqtrd φ k 0 supp 0 U A x K A k · ˙ k × ˙ x = 0 S
184 183 mpteq2dva φ k 0 supp 0 U A x K A k · ˙ k × ˙ x = x K 0 S
185 fconstmpt K × 0 S = x K 0 S
186 184 185 eqtr4di φ k 0 supp 0 U A x K A k · ˙ k × ˙ x = K × 0 S
187 137 cmnmndd φ S Mnd
188 22 168 pws0g S Mnd K V K × 0 S = 0 S 𝑠 K
189 187 133 188 syl2anc φ K × 0 S = 0 S 𝑠 K
190 189 adantr φ k 0 supp 0 U A K × 0 S = 0 S 𝑠 K
191 186 190 eqtrd φ k 0 supp 0 U A x K A k · ˙ k × ˙ x = 0 S 𝑠 K
192 191 135 suppss2 φ k 0 x K A k · ˙ k × ˙ x supp 0 S 𝑠 K A supp 0 U
193 suppssfifsupp k 0 x K A k · ˙ k × ˙ x V Fun k 0 x K A k · ˙ k × ˙ x 0 S 𝑠 K V A supp 0 U Fin k 0 x K A k · ˙ k × ˙ x supp 0 S 𝑠 K A supp 0 U finSupp 0 S 𝑠 K k 0 x K A k · ˙ k × ˙ x
194 153 155 156 159 192 193 syl32anc φ finSupp 0 S 𝑠 K k 0 x K A k · ˙ k × ˙ x
195 22 2 132 133 135 137 152 194 pwsgsum φ S 𝑠 K k 0 x K A k · ˙ k × ˙ x = x K S k 0 A k · ˙ k × ˙ x
196 80 131 195 3eqtrd φ Q W k 0 A k W k mulGrp W var 1 U = x K S k 0 A k · ˙ k × ˙ x
197 20 196 eqtrd φ Q M = x K S k 0 A k · ˙ k × ˙ x