Metamath Proof Explorer


Theorem evls1fvcl

Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1maprhm.q O = R evalSub 1 S
evls1maprhm.p P = Poly 1 R 𝑠 S
evls1maprhm.b B = Base R
evls1maprhm.u U = Base P
evls1maprhm.r φ R CRing
evls1maprhm.s φ S SubRing R
evls1fvcl.1 φ Y B
evls1fvcl.2 φ M U
Assertion evls1fvcl φ O M Y B

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O = R evalSub 1 S
2 evls1maprhm.p P = Poly 1 R 𝑠 S
3 evls1maprhm.b B = Base R
4 evls1maprhm.u U = Base P
5 evls1maprhm.r φ R CRing
6 evls1maprhm.s φ S SubRing R
7 evls1fvcl.1 φ Y B
8 evls1fvcl.2 φ M U
9 eqid R 𝑠 S = R 𝑠 S
10 eqid eval 1 R = eval 1 R
11 1 3 2 9 4 10 5 6 ressply1evl φ O = eval 1 R U
12 11 fveq1d φ O M = eval 1 R U M
13 8 fvresd φ eval 1 R U M = eval 1 R M
14 12 13 eqtrd φ O M = eval 1 R M
15 14 fveq1d φ O M Y = eval 1 R M Y
16 eqid Poly 1 R = Poly 1 R
17 eqid Base Poly 1 R = Base Poly 1 R
18 eqid Poly 1 R 𝑠 U = Poly 1 R 𝑠 U
19 16 9 2 4 6 18 ressply1bas φ U = Base Poly 1 R 𝑠 U
20 18 17 ressbasss Base Poly 1 R 𝑠 U Base Poly 1 R
21 19 20 eqsstrdi φ U Base Poly 1 R
22 21 8 sseldd φ M Base Poly 1 R
23 10 16 3 17 5 7 22 fveval1fvcl φ eval 1 R M Y B
24 15 23 eqeltrd φ O M Y B