Metamath Proof Explorer


Theorem evls1fvf

Description: The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1fn.o O = R evalSub 1 S
evls1fn.p P = Poly 1 R 𝑠 S
evls1fn.u U = Base P
evls1fn.1 φ R CRing
evls1fn.2 φ S SubRing R
evls1fvf.b B = Base R
evls1fvf.q φ Q U
Assertion evls1fvf φ O Q : B B

Proof

Step Hyp Ref Expression
1 evls1fn.o O = R evalSub 1 S
2 evls1fn.p P = Poly 1 R 𝑠 S
3 evls1fn.u U = Base P
4 evls1fn.1 φ R CRing
5 evls1fn.2 φ S SubRing R
6 evls1fvf.b B = Base R
7 evls1fvf.q φ Q U
8 eqid R 𝑠 B = R 𝑠 B
9 eqid Base R 𝑠 B = Base R 𝑠 B
10 6 fvexi B V
11 10 a1i φ B V
12 eqid R 𝑠 S = R 𝑠 S
13 1 6 8 12 2 evls1rhm R CRing S SubRing R O P RingHom R 𝑠 B
14 4 5 13 syl2anc φ O P RingHom R 𝑠 B
15 3 9 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
16 14 15 syl φ O : U Base R 𝑠 B
17 16 7 ffvelcdmd φ O Q Base R 𝑠 B
18 8 6 9 4 11 17 pwselbas φ O Q : B B