Metamath Proof Explorer


Theorem evls1gsummul

Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019)

Ref Expression
Hypotheses evls1gsummul.q Q = S evalSub 1 R
evls1gsummul.k K = Base S
evls1gsummul.w W = Poly 1 U
evls1gsummul.g G = mulGrp W
evls1gsummul.1 1 ˙ = 1 W
evls1gsummul.u U = S 𝑠 R
evls1gsummul.p P = S 𝑠 K
evls1gsummul.h H = mulGrp P
evls1gsummul.b B = Base W
evls1gsummul.s φ S CRing
evls1gsummul.r φ R SubRing S
evls1gsummul.y φ x N Y B
evls1gsummul.n φ N 0
evls1gsummul.f φ finSupp 1 ˙ x N Y
Assertion evls1gsummul φ Q G x N Y = H x N Q Y

Proof

Step Hyp Ref Expression
1 evls1gsummul.q Q = S evalSub 1 R
2 evls1gsummul.k K = Base S
3 evls1gsummul.w W = Poly 1 U
4 evls1gsummul.g G = mulGrp W
5 evls1gsummul.1 1 ˙ = 1 W
6 evls1gsummul.u U = S 𝑠 R
7 evls1gsummul.p P = S 𝑠 K
8 evls1gsummul.h H = mulGrp P
9 evls1gsummul.b B = Base W
10 evls1gsummul.s φ S CRing
11 evls1gsummul.r φ R SubRing S
12 evls1gsummul.y φ x N Y B
13 evls1gsummul.n φ N 0
14 evls1gsummul.f φ finSupp 1 ˙ x N Y
15 4 9 mgpbas B = Base G
16 4 5 ringidval 1 ˙ = 0 G
17 6 subrgcrng S CRing R SubRing S U CRing
18 10 11 17 syl2anc φ U CRing
19 3 ply1crng U CRing W CRing
20 4 crngmgp W CRing G CMnd
21 18 19 20 3syl φ G CMnd
22 crngring S CRing S Ring
23 10 22 syl φ S Ring
24 2 fvexi K V
25 23 24 jctir φ S Ring K V
26 7 pwsring S Ring K V P Ring
27 8 ringmgp P Ring H Mnd
28 25 26 27 3syl φ H Mnd
29 nn0ex 0 V
30 29 a1i φ 0 V
31 30 13 ssexd φ N V
32 1 2 7 6 3 evls1rhm S CRing R SubRing S Q W RingHom P
33 10 11 32 syl2anc φ Q W RingHom P
34 4 8 rhmmhm Q W RingHom P Q G MndHom H
35 33 34 syl φ Q G MndHom H
36 15 16 21 28 31 35 12 14 gsummptmhm φ H x N Q Y = Q G x N Y
37 36 eqcomd φ Q G x N Y = H x N Q Y