Metamath Proof Explorer


Theorem evls1maplmhm

Description: The function F mapping polynomials p to their subring evaluation at a given point A is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q O = R evalSub 1 S
evls1maprhm.p P = Poly 1 R 𝑠 S
evls1maprhm.b B = Base R
evls1maprhm.u U = Base P
evls1maprhm.r φ R CRing
evls1maprhm.s φ S SubRing R
evls1maprhm.y φ X B
evls1maprhm.f F = p U O p X
evls1maplmhm.1 A = subringAlg R S
Assertion evls1maplmhm φ F P LMHom A

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O = R evalSub 1 S
2 evls1maprhm.p P = Poly 1 R 𝑠 S
3 evls1maprhm.b B = Base R
4 evls1maprhm.u U = Base P
5 evls1maprhm.r φ R CRing
6 evls1maprhm.s φ S SubRing R
7 evls1maprhm.y φ X B
8 evls1maprhm.f F = p U O p X
9 evls1maplmhm.1 A = subringAlg R S
10 eqid R 𝑠 S = R 𝑠 S
11 10 subrgring S SubRing R R 𝑠 S Ring
12 6 11 syl φ R 𝑠 S Ring
13 2 ply1lmod R 𝑠 S Ring P LMod
14 12 13 syl φ P LMod
15 9 sralmod S SubRing R A LMod
16 6 15 syl φ A LMod
17 1 2 3 4 5 6 7 8 evls1maprhm φ F P RingHom R
18 rhmghm F P RingHom R F P GrpHom R
19 17 18 syl φ F P GrpHom R
20 4 a1i φ U = Base P
21 3 a1i φ B = Base R
22 9 a1i φ A = subringAlg R S
23 3 subrgss S SubRing R S B
24 6 23 syl φ S B
25 24 3 sseqtrdi φ S Base R
26 22 25 srabase φ Base R = Base A
27 3 26 eqtrid φ B = Base A
28 eqidd φ x U y U x + P y = x + P y
29 22 25 sraaddg φ + R = + A
30 29 oveqdr φ x B y B x + R y = x + A y
31 20 21 20 27 28 30 ghmpropd φ P GrpHom R = P GrpHom A
32 19 31 eleqtrd φ F P GrpHom A
33 22 25 srasca φ R 𝑠 S = Scalar A
34 ovex R 𝑠 S V
35 2 ply1sca R 𝑠 S V R 𝑠 S = Scalar P
36 34 35 mp1i φ R 𝑠 S = Scalar P
37 33 36 eqtr3d φ Scalar A = Scalar P
38 fveq2 p = k P x O p = O k P x
39 38 fveq1d p = k P x O p X = O k P x X
40 14 ad2antrr φ k Base Scalar P x U P LMod
41 simplr φ k Base Scalar P x U k Base Scalar P
42 simpr φ k Base Scalar P x U x U
43 eqid Scalar P = Scalar P
44 eqid P = P
45 eqid Base Scalar P = Base Scalar P
46 4 43 44 45 lmodvscl P LMod k Base Scalar P x U k P x U
47 40 41 42 46 syl3anc φ k Base Scalar P x U k P x U
48 fvexd φ k Base Scalar P x U O k P x X V
49 8 39 47 48 fvmptd3 φ k Base Scalar P x U F k P x = O k P x X
50 eqid R = R
51 5 ad2antrr φ k Base Scalar P x U R CRing
52 6 ad2antrr φ k Base Scalar P x U S SubRing R
53 10 3 ressbas2 S B S = Base R 𝑠 S
54 24 53 syl φ S = Base R 𝑠 S
55 36 fveq2d φ Base R 𝑠 S = Base Scalar P
56 54 55 eqtr2d φ Base Scalar P = S
57 56 eqimssd φ Base Scalar P S
58 57 sselda φ k Base Scalar P k S
59 58 adantr φ k Base Scalar P x U k S
60 7 ad2antrr φ k Base Scalar P x U X B
61 1 3 2 10 4 44 50 51 52 59 42 60 evls1vsca φ k Base Scalar P x U O k P x X = k R O x X
62 22 25 sravsca φ R = A
63 62 ad2antrr φ k Base Scalar P x U R = A
64 eqidd φ k Base Scalar P x U k = k
65 fveq2 p = x O p = O x
66 65 fveq1d p = x O p X = O x X
67 fvexd φ k Base Scalar P x U O x X V
68 8 66 42 67 fvmptd3 φ k Base Scalar P x U F x = O x X
69 68 eqcomd φ k Base Scalar P x U O x X = F x
70 63 64 69 oveq123d φ k Base Scalar P x U k R O x X = k A F x
71 49 61 70 3eqtrd φ k Base Scalar P x U F k P x = k A F x
72 71 anasss φ k Base Scalar P x U F k P x = k A F x
73 72 ralrimivva φ k Base Scalar P x U F k P x = k A F x
74 eqid Scalar A = Scalar A
75 eqid A = A
76 43 74 45 4 44 75 islmhm F P LMHom A P LMod A LMod F P GrpHom A Scalar A = Scalar P k Base Scalar P x U F k P x = k A F x
77 76 biimpri P LMod A LMod F P GrpHom A Scalar A = Scalar P k Base Scalar P x U F k P x = k A F x F P LMHom A
78 14 16 32 37 73 77 syl23anc φ F P LMHom A