Metamath Proof Explorer


Theorem evls1maprhm

Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q O = R evalSub 1 S
evls1maprhm.p P = Poly 1 R 𝑠 S
evls1maprhm.b B = Base R
evls1maprhm.u U = Base P
evls1maprhm.r φ R CRing
evls1maprhm.s φ S SubRing R
evls1maprhm.y φ X B
evls1maprhm.f F = p U O p X
Assertion evls1maprhm φ F P RingHom R

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O = R evalSub 1 S
2 evls1maprhm.p P = Poly 1 R 𝑠 S
3 evls1maprhm.b B = Base R
4 evls1maprhm.u U = Base P
5 evls1maprhm.r φ R CRing
6 evls1maprhm.s φ S SubRing R
7 evls1maprhm.y φ X B
8 evls1maprhm.f F = p U O p X
9 eqid 1 P = 1 P
10 eqid 1 R = 1 R
11 eqid P = P
12 eqid R = R
13 eqid R 𝑠 S = R 𝑠 S
14 13 subrgcrng R CRing S SubRing R R 𝑠 S CRing
15 5 6 14 syl2anc φ R 𝑠 S CRing
16 2 ply1crng R 𝑠 S CRing P CRing
17 15 16 syl φ P CRing
18 17 crngringd φ P Ring
19 5 crngringd φ R Ring
20 fveq2 p = 1 P O p = O 1 P
21 20 fveq1d p = 1 P O p X = O 1 P X
22 4 9 ringidcl P Ring 1 P U
23 18 22 syl φ 1 P U
24 fvexd φ O 1 P X V
25 8 21 23 24 fvmptd3 φ F 1 P = O 1 P X
26 13 10 subrg1 S SubRing R 1 R = 1 R 𝑠 S
27 6 26 syl φ 1 R = 1 R 𝑠 S
28 27 fveq2d φ algSc P 1 R = algSc P 1 R 𝑠 S
29 15 crngringd φ R 𝑠 S Ring
30 eqid algSc P = algSc P
31 eqid 1 R 𝑠 S = 1 R 𝑠 S
32 2 30 31 9 ply1scl1 R 𝑠 S Ring algSc P 1 R 𝑠 S = 1 P
33 29 32 syl φ algSc P 1 R 𝑠 S = 1 P
34 28 33 eqtr2d φ 1 P = algSc P 1 R
35 34 fveq2d φ O 1 P = O algSc P 1 R
36 35 fveq1d φ O 1 P X = O algSc P 1 R X
37 10 subrg1cl S SubRing R 1 R S
38 6 37 syl φ 1 R S
39 1 2 13 3 30 5 6 38 7 evls1scafv φ O algSc P 1 R X = 1 R
40 25 36 39 3eqtrd φ F 1 P = 1 R
41 5 adantr φ q U r U R CRing
42 6 adantr φ q U r U S SubRing R
43 simprl φ q U r U q U
44 simprr φ q U r U r U
45 7 adantr φ q U r U X B
46 1 3 2 13 4 11 12 41 42 43 44 45 evls1muld φ q U r U O q P r X = O q X R O r X
47 fveq2 p = q P r O p = O q P r
48 47 fveq1d p = q P r O p X = O q P r X
49 18 adantr φ q U r U P Ring
50 4 11 49 43 44 ringcld φ q U r U q P r U
51 fvexd φ q U r U O q P r X V
52 8 48 50 51 fvmptd3 φ q U r U F q P r = O q P r X
53 fveq2 p = q O p = O q
54 53 fveq1d p = q O p X = O q X
55 fvexd φ q U r U O q X V
56 8 54 43 55 fvmptd3 φ q U r U F q = O q X
57 fveq2 p = r O p = O r
58 57 fveq1d p = r O p X = O r X
59 fvexd φ q U r U O r X V
60 8 58 44 59 fvmptd3 φ q U r U F r = O r X
61 56 60 oveq12d φ q U r U F q R F r = O q X R O r X
62 46 52 61 3eqtr4d φ q U r U F q P r = F q R F r
63 eqid + P = + P
64 eqid + R = + R
65 eqid eval 1 R = eval 1 R
66 1 3 2 13 4 65 5 6 ressply1evl φ O = eval 1 R U
67 66 adantr φ p U O = eval 1 R U
68 67 fveq1d φ p U O p = eval 1 R U p
69 simpr φ p U p U
70 69 fvresd φ p U eval 1 R U p = eval 1 R p
71 68 70 eqtrd φ p U O p = eval 1 R p
72 71 fveq1d φ p U O p X = eval 1 R p X
73 eqid Poly 1 R = Poly 1 R
74 eqid Base Poly 1 R = Base Poly 1 R
75 5 adantr φ p U R CRing
76 7 adantr φ p U X B
77 eqid PwSer 1 R 𝑠 S = PwSer 1 R 𝑠 S
78 eqid Base PwSer 1 R 𝑠 S = Base PwSer 1 R 𝑠 S
79 73 13 2 4 6 77 78 74 ressply1bas2 φ U = Base PwSer 1 R 𝑠 S Base Poly 1 R
80 inss2 Base PwSer 1 R 𝑠 S Base Poly 1 R Base Poly 1 R
81 79 80 eqsstrdi φ U Base Poly 1 R
82 81 sselda φ p U p Base Poly 1 R
83 65 73 3 74 75 76 82 fveval1fvcl φ p U eval 1 R p X B
84 72 83 eqeltrd φ p U O p X B
85 84 8 fmptd φ F : U B
86 1 3 2 13 4 63 64 41 42 43 44 45 evls1addd φ q U r U O q + P r X = O q X + R O r X
87 fveq2 p = q + P r O p = O q + P r
88 87 fveq1d p = q + P r O p X = O q + P r X
89 49 ringgrpd φ q U r U P Grp
90 4 63 89 43 44 grpcld φ q U r U q + P r U
91 fvexd φ q U r U O q + P r X V
92 8 88 90 91 fvmptd3 φ q U r U F q + P r = O q + P r X
93 56 60 oveq12d φ q U r U F q + R F r = O q X + R O r X
94 86 92 93 3eqtr4d φ q U r U F q + P r = F q + R F r
95 4 9 10 11 12 18 19 40 62 3 63 64 85 94 isrhmd φ F P RingHom R