Metamath Proof Explorer


Theorem evls1maprnss

Description: The function F mapping polynomials p to their subring evaluation at a given point A takes all values in the subring S . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q O = R evalSub 1 S
evls1maprhm.p P = Poly 1 R 𝑠 S
evls1maprhm.b B = Base R
evls1maprhm.u U = Base P
evls1maprhm.r φ R CRing
evls1maprhm.s φ S SubRing R
evls1maprhm.y φ X B
evls1maprhm.f F = p U O p X
Assertion evls1maprnss φ S ran F

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O = R evalSub 1 S
2 evls1maprhm.p P = Poly 1 R 𝑠 S
3 evls1maprhm.b B = Base R
4 evls1maprhm.u U = Base P
5 evls1maprhm.r φ R CRing
6 evls1maprhm.s φ S SubRing R
7 evls1maprhm.y φ X B
8 evls1maprhm.f F = p U O p X
9 eqid Poly 1 R = Poly 1 R
10 eqid algSc Poly 1 R = algSc Poly 1 R
11 eqid R 𝑠 S = R 𝑠 S
12 eqid algSc P = algSc P
13 9 10 11 2 6 12 subrg1ascl φ algSc P = algSc Poly 1 R S
14 13 adantr φ y S algSc P = algSc Poly 1 R S
15 14 fveq1d φ y S algSc P y = algSc Poly 1 R S y
16 simpr φ y S y S
17 16 fvresd φ y S algSc Poly 1 R S y = algSc Poly 1 R y
18 15 17 eqtrd φ y S algSc P y = algSc Poly 1 R y
19 6 adantr φ y S S SubRing R
20 10 11 9 2 4 19 16 asclply1subcl φ y S algSc Poly 1 R y U
21 18 20 eqeltrd φ y S algSc P y U
22 fveq2 p = algSc P y O p = O algSc P y
23 22 fveq1d p = algSc P y O p X = O algSc P y X
24 23 eqeq2d p = algSc P y y = O p X y = O algSc P y X
25 24 adantl φ y S p = algSc P y y = O p X y = O algSc P y X
26 5 adantr φ y S R CRing
27 1 2 11 3 12 26 19 16 evls1sca φ y S O algSc P y = B × y
28 27 fveq1d φ y S O algSc P y X = B × y X
29 7 adantr φ y S X B
30 vex y V
31 30 fvconst2 X B B × y X = y
32 29 31 syl φ y S B × y X = y
33 28 32 eqtr2d φ y S y = O algSc P y X
34 21 25 33 rspcedvd φ y S p U y = O p X
35 8 34 16 elrnmptd φ y S y ran F
36 35 ex φ y S y ran F
37 36 ssrdv φ S ran F