Metamath Proof Explorer


Theorem evls1muld

Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses ressply1evl2.q Q = S evalSub 1 R
ressply1evl2.k K = Base S
ressply1evl2.w W = Poly 1 U
ressply1evl2.u U = S 𝑠 R
ressply1evl2.b B = Base W
evls1muld.1 × ˙ = W
evls1muld.2 · ˙ = S
evls1muld.s φ S CRing
evls1muld.r φ R SubRing S
evls1muld.m φ M B
evls1muld.n φ N B
evls1muld.c φ C K
Assertion evls1muld φ Q M × ˙ N C = Q M C · ˙ Q N C

Proof

Step Hyp Ref Expression
1 ressply1evl2.q Q = S evalSub 1 R
2 ressply1evl2.k K = Base S
3 ressply1evl2.w W = Poly 1 U
4 ressply1evl2.u U = S 𝑠 R
5 ressply1evl2.b B = Base W
6 evls1muld.1 × ˙ = W
7 evls1muld.2 · ˙ = S
8 evls1muld.s φ S CRing
9 evls1muld.r φ R SubRing S
10 evls1muld.m φ M B
11 evls1muld.n φ N B
12 evls1muld.c φ C K
13 id φ φ
14 eqid Poly 1 S = Poly 1 S
15 eqid Poly 1 S 𝑠 B = Poly 1 S 𝑠 B
16 14 4 3 5 9 15 ressply1mul φ M B N B M W N = M Poly 1 S 𝑠 B N
17 13 10 11 16 syl12anc φ M W N = M Poly 1 S 𝑠 B N
18 6 oveqi M × ˙ N = M W N
19 5 fvexi B V
20 eqid Poly 1 S = Poly 1 S
21 15 20 ressmulr B V Poly 1 S = Poly 1 S 𝑠 B
22 19 21 ax-mp Poly 1 S = Poly 1 S 𝑠 B
23 22 oveqi M Poly 1 S N = M Poly 1 S 𝑠 B N
24 17 18 23 3eqtr4g φ M × ˙ N = M Poly 1 S N
25 24 fveq2d φ eval 1 S M × ˙ N = eval 1 S M Poly 1 S N
26 25 fveq1d φ eval 1 S M × ˙ N C = eval 1 S M Poly 1 S N C
27 eqid eval 1 S = eval 1 S
28 1 2 3 4 5 27 8 9 ressply1evl φ Q = eval 1 S B
29 28 fveq1d φ Q M × ˙ N = eval 1 S B M × ˙ N
30 4 subrgring R SubRing S U Ring
31 3 ply1ring U Ring W Ring
32 9 30 31 3syl φ W Ring
33 5 6 32 10 11 ringcld φ M × ˙ N B
34 33 fvresd φ eval 1 S B M × ˙ N = eval 1 S M × ˙ N
35 29 34 eqtr2d φ eval 1 S M × ˙ N = Q M × ˙ N
36 35 fveq1d φ eval 1 S M × ˙ N C = Q M × ˙ N C
37 eqid Base Poly 1 S = Base Poly 1 S
38 eqid PwSer 1 U = PwSer 1 U
39 eqid Base PwSer 1 U = Base PwSer 1 U
40 14 4 3 5 9 38 39 37 ressply1bas2 φ B = Base PwSer 1 U Base Poly 1 S
41 inss2 Base PwSer 1 U Base Poly 1 S Base Poly 1 S
42 40 41 eqsstrdi φ B Base Poly 1 S
43 42 10 sseldd φ M Base Poly 1 S
44 28 fveq1d φ Q M = eval 1 S B M
45 10 fvresd φ eval 1 S B M = eval 1 S M
46 44 45 eqtr2d φ eval 1 S M = Q M
47 46 fveq1d φ eval 1 S M C = Q M C
48 43 47 jca φ M Base Poly 1 S eval 1 S M C = Q M C
49 42 11 sseldd φ N Base Poly 1 S
50 28 fveq1d φ Q N = eval 1 S B N
51 11 fvresd φ eval 1 S B N = eval 1 S N
52 50 51 eqtr2d φ eval 1 S N = Q N
53 52 fveq1d φ eval 1 S N C = Q N C
54 49 53 jca φ N Base Poly 1 S eval 1 S N C = Q N C
55 27 14 2 37 8 12 48 54 20 7 evl1muld φ M Poly 1 S N Base Poly 1 S eval 1 S M Poly 1 S N C = Q M C · ˙ Q N C
56 55 simprd φ eval 1 S M Poly 1 S N C = Q M C · ˙ Q N C
57 26 36 56 3eqtr3d φ Q M × ˙ N C = Q M C · ˙ Q N C