Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
|
2 |
|
ressply1evl2.k |
|
3 |
|
ressply1evl2.w |
|
4 |
|
ressply1evl2.u |
|
5 |
|
ressply1evl2.b |
|
6 |
|
evls1muld.1 |
|
7 |
|
evls1muld.2 |
|
8 |
|
evls1muld.s |
|
9 |
|
evls1muld.r |
|
10 |
|
evls1muld.m |
|
11 |
|
evls1muld.n |
|
12 |
|
evls1muld.c |
|
13 |
|
id |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 4 3 5 9 15
|
ressply1mul |
|
17 |
13 10 11 16
|
syl12anc |
|
18 |
6
|
oveqi |
|
19 |
5
|
fvexi |
|
20 |
|
eqid |
|
21 |
15 20
|
ressmulr |
|
22 |
19 21
|
ax-mp |
|
23 |
22
|
oveqi |
|
24 |
17 18 23
|
3eqtr4g |
|
25 |
24
|
fveq2d |
|
26 |
25
|
fveq1d |
|
27 |
|
eqid |
|
28 |
1 2 3 4 5 27 8 9
|
ressply1evl |
|
29 |
28
|
fveq1d |
|
30 |
4
|
subrgring |
|
31 |
3
|
ply1ring |
|
32 |
9 30 31
|
3syl |
|
33 |
5 6 32 10 11
|
ringcld |
|
34 |
33
|
fvresd |
|
35 |
29 34
|
eqtr2d |
|
36 |
35
|
fveq1d |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
14 4 3 5 9 38 39 37
|
ressply1bas2 |
|
41 |
|
inss2 |
|
42 |
40 41
|
eqsstrdi |
|
43 |
42 10
|
sseldd |
|
44 |
28
|
fveq1d |
|
45 |
10
|
fvresd |
|
46 |
44 45
|
eqtr2d |
|
47 |
46
|
fveq1d |
|
48 |
43 47
|
jca |
|
49 |
42 11
|
sseldd |
|
50 |
28
|
fveq1d |
|
51 |
11
|
fvresd |
|
52 |
50 51
|
eqtr2d |
|
53 |
52
|
fveq1d |
|
54 |
49 53
|
jca |
|
55 |
27 14 2 37 8 12 48 54 20 7
|
evl1muld |
|
56 |
55
|
simprd |
|
57 |
26 36 56
|
3eqtr3d |
|