Metamath Proof Explorer


Theorem evls1rhm

Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019)

Ref Expression
Hypotheses evls1rhm.q Q = S evalSub 1 R
evls1rhm.b B = Base S
evls1rhm.t T = S 𝑠 B
evls1rhm.u U = S 𝑠 R
evls1rhm.w W = Poly 1 U
Assertion evls1rhm S CRing R SubRing S Q W RingHom T

Proof

Step Hyp Ref Expression
1 evls1rhm.q Q = S evalSub 1 R
2 evls1rhm.b B = Base S
3 evls1rhm.t T = S 𝑠 B
4 evls1rhm.u U = S 𝑠 R
5 evls1rhm.w W = Poly 1 U
6 2 subrgss R SubRing S R B
7 6 adantl S CRing R SubRing S R B
8 elpwg R SubRing S R 𝒫 B R B
9 8 adantl S CRing R SubRing S R 𝒫 B R B
10 7 9 mpbird S CRing R SubRing S R 𝒫 B
11 eqid 1 𝑜 evalSub S = 1 𝑜 evalSub S
12 1 11 2 evls1fval S CRing R 𝒫 B Q = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R
13 10 12 syldan S CRing R SubRing S Q = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R
14 eqid x B B 1 𝑜 x y B 1 𝑜 × y = x B B 1 𝑜 x y B 1 𝑜 × y
15 2 3 14 evls1rhmlem S CRing x B B 1 𝑜 x y B 1 𝑜 × y S 𝑠 B 1 𝑜 RingHom T
16 1on 1 𝑜 On
17 eqid 1 𝑜 evalSub S R = 1 𝑜 evalSub S R
18 eqid 1 𝑜 mPoly U = 1 𝑜 mPoly U
19 eqid S 𝑠 B 1 𝑜 = S 𝑠 B 1 𝑜
20 17 18 4 19 2 evlsrhm 1 𝑜 On S CRing R SubRing S 1 𝑜 evalSub S R 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜
21 16 20 mp3an1 S CRing R SubRing S 1 𝑜 evalSub S R 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜
22 eqidd S CRing R SubRing S Base W = Base W
23 eqidd S CRing R SubRing S Base S 𝑠 B 1 𝑜 = Base S 𝑠 B 1 𝑜
24 eqid PwSer 1 U = PwSer 1 U
25 eqid Base W = Base W
26 5 24 25 ply1bas Base W = Base 1 𝑜 mPoly U
27 26 a1i S CRing R SubRing S Base W = Base 1 𝑜 mPoly U
28 eqid + W = + W
29 5 18 28 ply1plusg + W = + 1 𝑜 mPoly U
30 29 a1i S CRing R SubRing S + W = + 1 𝑜 mPoly U
31 30 oveqdr S CRing R SubRing S x Base W y Base W x + W y = x + 1 𝑜 mPoly U y
32 eqidd S CRing R SubRing S x Base S 𝑠 B 1 𝑜 y Base S 𝑠 B 1 𝑜 x + S 𝑠 B 1 𝑜 y = x + S 𝑠 B 1 𝑜 y
33 eqid W = W
34 5 18 33 ply1mulr W = 1 𝑜 mPoly U
35 34 a1i S CRing R SubRing S W = 1 𝑜 mPoly U
36 35 oveqdr S CRing R SubRing S x Base W y Base W x W y = x 1 𝑜 mPoly U y
37 eqidd S CRing R SubRing S x Base S 𝑠 B 1 𝑜 y Base S 𝑠 B 1 𝑜 x S 𝑠 B 1 𝑜 y = x S 𝑠 B 1 𝑜 y
38 22 23 27 23 31 32 36 37 rhmpropd S CRing R SubRing S W RingHom S 𝑠 B 1 𝑜 = 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜
39 21 38 eleqtrrd S CRing R SubRing S 1 𝑜 evalSub S R W RingHom S 𝑠 B 1 𝑜
40 rhmco x B B 1 𝑜 x y B 1 𝑜 × y S 𝑠 B 1 𝑜 RingHom T 1 𝑜 evalSub S R W RingHom S 𝑠 B 1 𝑜 x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R W RingHom T
41 15 39 40 syl2an2r S CRing R SubRing S x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R W RingHom T
42 13 41 eqeltrd S CRing R SubRing S Q W RingHom T