Metamath Proof Explorer


Theorem evls1rhmlem

Description: Lemma for evl1rhm and evls1rhm (formerly part of the proof of evl1rhm ): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019)

Ref Expression
Hypotheses evl1rhmlem.b B = Base R
evl1rhmlem.t T = R 𝑠 B
evl1rhmlem.f F = x B B 1 𝑜 x y B 1 𝑜 × y
Assertion evls1rhmlem R CRing F R 𝑠 B 1 𝑜 RingHom T

Proof

Step Hyp Ref Expression
1 evl1rhmlem.b B = Base R
2 evl1rhmlem.t T = R 𝑠 B
3 evl1rhmlem.f F = x B B 1 𝑜 x y B 1 𝑜 × y
4 ovex B 1 𝑜 V
5 eqid R 𝑠 B 1 𝑜 = R 𝑠 B 1 𝑜
6 5 1 pwsbas R CRing B 1 𝑜 V B B 1 𝑜 = Base R 𝑠 B 1 𝑜
7 4 6 mpan2 R CRing B B 1 𝑜 = Base R 𝑠 B 1 𝑜
8 7 mpteq1d R CRing x B B 1 𝑜 x y B 1 𝑜 × y = x Base R 𝑠 B 1 𝑜 x y B 1 𝑜 × y
9 3 8 syl5eq R CRing F = x Base R 𝑠 B 1 𝑜 x y B 1 𝑜 × y
10 eqid Base R 𝑠 B 1 𝑜 = Base R 𝑠 B 1 𝑜
11 crngring R CRing R Ring
12 1 fvexi B V
13 12 a1i R CRing B V
14 4 a1i R CRing B 1 𝑜 V
15 df1o2 1 𝑜 =
16 0ex V
17 eqid y B 1 𝑜 × y = y B 1 𝑜 × y
18 15 12 16 17 mapsnf1o3 y B 1 𝑜 × y : B 1-1 onto B 1 𝑜
19 f1of y B 1 𝑜 × y : B 1-1 onto B 1 𝑜 y B 1 𝑜 × y : B B 1 𝑜
20 18 19 mp1i R CRing y B 1 𝑜 × y : B B 1 𝑜
21 2 5 10 11 13 14 20 pwsco1rhm R CRing x Base R 𝑠 B 1 𝑜 x y B 1 𝑜 × y R 𝑠 B 1 𝑜 RingHom T
22 9 21 eqeltrd R CRing F R 𝑠 B 1 𝑜 RingHom T