Metamath Proof Explorer


Theorem evls1sca

Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)

Ref Expression
Hypotheses evls1sca.q Q = S evalSub 1 R
evls1sca.w W = Poly 1 U
evls1sca.u U = S 𝑠 R
evls1sca.b B = Base S
evls1sca.a A = algSc W
evls1sca.s φ S CRing
evls1sca.r φ R SubRing S
evls1sca.x φ X R
Assertion evls1sca φ Q A X = B × X

Proof

Step Hyp Ref Expression
1 evls1sca.q Q = S evalSub 1 R
2 evls1sca.w W = Poly 1 U
3 evls1sca.u U = S 𝑠 R
4 evls1sca.b B = Base S
5 evls1sca.a A = algSc W
6 evls1sca.s φ S CRing
7 evls1sca.r φ R SubRing S
8 evls1sca.x φ X R
9 1on 1 𝑜 On
10 eqid 1 𝑜 evalSub S R = 1 𝑜 evalSub S R
11 eqid 1 𝑜 mPoly U = 1 𝑜 mPoly U
12 eqid S 𝑠 B 1 𝑜 = S 𝑠 B 1 𝑜
13 10 11 3 12 4 evlsrhm 1 𝑜 On S CRing R SubRing S 1 𝑜 evalSub S R 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜
14 9 6 7 13 mp3an2i φ 1 𝑜 evalSub S R 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜
15 eqid Base 1 𝑜 mPoly U = Base 1 𝑜 mPoly U
16 eqid Base S 𝑠 B 1 𝑜 = Base S 𝑠 B 1 𝑜
17 15 16 rhmf 1 𝑜 evalSub S R 1 𝑜 mPoly U RingHom S 𝑠 B 1 𝑜 1 𝑜 evalSub S R : Base 1 𝑜 mPoly U Base S 𝑠 B 1 𝑜
18 14 17 syl φ 1 𝑜 evalSub S R : Base 1 𝑜 mPoly U Base S 𝑠 B 1 𝑜
19 eqid Scalar W = Scalar W
20 3 subrgring R SubRing S U Ring
21 7 20 syl φ U Ring
22 2 ply1ring U Ring W Ring
23 21 22 syl φ W Ring
24 2 ply1lmod U Ring W LMod
25 21 24 syl φ W LMod
26 eqid Base Scalar W = Base Scalar W
27 eqid Base W = Base W
28 5 19 23 25 26 27 asclf φ A : Base Scalar W Base W
29 4 subrgss R SubRing S R B
30 7 29 syl φ R B
31 3 4 ressbas2 R B R = Base U
32 30 31 syl φ R = Base U
33 2 ply1sca U Ring U = Scalar W
34 21 33 syl φ U = Scalar W
35 34 fveq2d φ Base U = Base Scalar W
36 32 35 eqtrd φ R = Base Scalar W
37 2 27 ply1bas Base W = Base 1 𝑜 mPoly U
38 37 a1i φ Base W = Base 1 𝑜 mPoly U
39 38 eqcomd φ Base 1 𝑜 mPoly U = Base W
40 36 39 feq23d φ A : R Base 1 𝑜 mPoly U A : Base Scalar W Base W
41 28 40 mpbird φ A : R Base 1 𝑜 mPoly U
42 41 8 ffvelcdmd φ A X Base 1 𝑜 mPoly U
43 fvco3 1 𝑜 evalSub S R : Base 1 𝑜 mPoly U Base S 𝑠 B 1 𝑜 A X Base 1 𝑜 mPoly U x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X
44 18 42 43 syl2anc φ x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X
45 5 a1i φ A = algSc W
46 eqid algSc W = algSc W
47 2 46 ply1ascl algSc W = algSc 1 𝑜 mPoly U
48 45 47 eqtrdi φ A = algSc 1 𝑜 mPoly U
49 48 fveq1d φ A X = algSc 1 𝑜 mPoly U X
50 49 fveq2d φ 1 𝑜 evalSub S R A X = 1 𝑜 evalSub S R algSc 1 𝑜 mPoly U X
51 eqid algSc 1 𝑜 mPoly U = algSc 1 𝑜 mPoly U
52 9 a1i φ 1 𝑜 On
53 10 11 3 4 51 52 6 7 8 evlssca φ 1 𝑜 evalSub S R algSc 1 𝑜 mPoly U X = B 1 𝑜 × X
54 50 53 eqtrd φ 1 𝑜 evalSub S R A X = B 1 𝑜 × X
55 54 fveq2d φ x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X = x B B 1 𝑜 x y B 1 𝑜 × y B 1 𝑜 × X
56 eqidd φ x B B 1 𝑜 x y B 1 𝑜 × y = x B B 1 𝑜 x y B 1 𝑜 × y
57 coeq1 x = B 1 𝑜 × X x y B 1 𝑜 × y = B 1 𝑜 × X y B 1 𝑜 × y
58 57 adantl φ x = B 1 𝑜 × X x y B 1 𝑜 × y = B 1 𝑜 × X y B 1 𝑜 × y
59 30 8 sseldd φ X B
60 fconst6g X B B 1 𝑜 × X : B 1 𝑜 B
61 59 60 syl φ B 1 𝑜 × X : B 1 𝑜 B
62 4 fvexi B V
63 62 a1i φ B V
64 ovex B 1 𝑜 V
65 64 a1i φ B 1 𝑜 V
66 63 65 elmapd φ B 1 𝑜 × X B B 1 𝑜 B 1 𝑜 × X : B 1 𝑜 B
67 61 66 mpbird φ B 1 𝑜 × X B B 1 𝑜
68 snex X V
69 64 68 xpex B 1 𝑜 × X V
70 69 a1i φ B 1 𝑜 × X V
71 63 mptexd φ y B 1 𝑜 × y V
72 coexg B 1 𝑜 × X V y B 1 𝑜 × y V B 1 𝑜 × X y B 1 𝑜 × y V
73 70 71 72 syl2anc φ B 1 𝑜 × X y B 1 𝑜 × y V
74 56 58 67 73 fvmptd φ x B B 1 𝑜 x y B 1 𝑜 × y B 1 𝑜 × X = B 1 𝑜 × X y B 1 𝑜 × y
75 fconst6g y B 1 𝑜 × y : 1 𝑜 B
76 75 adantl φ y B 1 𝑜 × y : 1 𝑜 B
77 62 9 pm3.2i B V 1 𝑜 On
78 77 a1i φ y B B V 1 𝑜 On
79 elmapg B V 1 𝑜 On 1 𝑜 × y B 1 𝑜 1 𝑜 × y : 1 𝑜 B
80 78 79 syl φ y B 1 𝑜 × y B 1 𝑜 1 𝑜 × y : 1 𝑜 B
81 76 80 mpbird φ y B 1 𝑜 × y B 1 𝑜
82 eqidd φ y B 1 𝑜 × y = y B 1 𝑜 × y
83 fconstmpt B 1 𝑜 × X = z B 1 𝑜 X
84 83 a1i φ B 1 𝑜 × X = z B 1 𝑜 X
85 eqidd z = 1 𝑜 × y X = X
86 81 82 84 85 fmptco φ B 1 𝑜 × X y B 1 𝑜 × y = y B X
87 74 86 eqtrd φ x B B 1 𝑜 x y B 1 𝑜 × y B 1 𝑜 × X = y B X
88 44 55 87 3eqtrd φ x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X = y B X
89 elpwg R SubRing S R 𝒫 B R B
90 29 89 mpbird R SubRing S R 𝒫 B
91 7 90 syl φ R 𝒫 B
92 eqid 1 𝑜 evalSub S = 1 𝑜 evalSub S
93 1 92 4 evls1fval S CRing R 𝒫 B Q = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R
94 6 91 93 syl2anc φ Q = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R
95 94 fveq1d φ Q A X = x B B 1 𝑜 x y B 1 𝑜 × y 1 𝑜 evalSub S R A X
96 fconstmpt B × X = y B X
97 96 a1i φ B × X = y B X
98 88 95 97 3eqtr4d φ Q A X = B × X