Metamath Proof Explorer


Theorem evls1sca

Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)

Ref Expression
Hypotheses evls1sca.q Q=SevalSub1R
evls1sca.w W=Poly1U
evls1sca.u U=S𝑠R
evls1sca.b B=BaseS
evls1sca.a A=algScW
evls1sca.s φSCRing
evls1sca.r φRSubRingS
evls1sca.x φXR
Assertion evls1sca φQAX=B×X

Proof

Step Hyp Ref Expression
1 evls1sca.q Q=SevalSub1R
2 evls1sca.w W=Poly1U
3 evls1sca.u U=S𝑠R
4 evls1sca.b B=BaseS
5 evls1sca.a A=algScW
6 evls1sca.s φSCRing
7 evls1sca.r φRSubRingS
8 evls1sca.x φXR
9 1on 1𝑜On
10 eqid 1𝑜evalSubSR=1𝑜evalSubSR
11 eqid 1𝑜mPolyU=1𝑜mPolyU
12 eqid S𝑠B1𝑜=S𝑠B1𝑜
13 10 11 3 12 4 evlsrhm 1𝑜OnSCRingRSubRingS1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
14 9 6 7 13 mp3an2i φ1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜
15 eqid Base1𝑜mPolyU=Base1𝑜mPolyU
16 eqid BaseS𝑠B1𝑜=BaseS𝑠B1𝑜
17 15 16 rhmf 1𝑜evalSubSR1𝑜mPolyURingHomS𝑠B1𝑜1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜
18 14 17 syl φ1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜
19 eqid ScalarW=ScalarW
20 3 subrgring RSubRingSURing
21 7 20 syl φURing
22 2 ply1ring URingWRing
23 21 22 syl φWRing
24 2 ply1lmod URingWLMod
25 21 24 syl φWLMod
26 eqid BaseScalarW=BaseScalarW
27 eqid BaseW=BaseW
28 5 19 23 25 26 27 asclf φA:BaseScalarWBaseW
29 4 subrgss RSubRingSRB
30 7 29 syl φRB
31 3 4 ressbas2 RBR=BaseU
32 30 31 syl φR=BaseU
33 2 ply1sca URingU=ScalarW
34 21 33 syl φU=ScalarW
35 34 fveq2d φBaseU=BaseScalarW
36 32 35 eqtrd φR=BaseScalarW
37 2 27 ply1bas BaseW=Base1𝑜mPolyU
38 37 a1i φBaseW=Base1𝑜mPolyU
39 38 eqcomd φBase1𝑜mPolyU=BaseW
40 36 39 feq23d φA:RBase1𝑜mPolyUA:BaseScalarWBaseW
41 28 40 mpbird φA:RBase1𝑜mPolyU
42 41 8 ffvelcdmd φAXBase1𝑜mPolyU
43 fvco3 1𝑜evalSubSR:Base1𝑜mPolyUBaseS𝑠B1𝑜AXBase1𝑜mPolyUxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
44 18 42 43 syl2anc φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
45 5 a1i φA=algScW
46 eqid algScW=algScW
47 2 46 ply1ascl algScW=algSc1𝑜mPolyU
48 45 47 eqtrdi φA=algSc1𝑜mPolyU
49 48 fveq1d φAX=algSc1𝑜mPolyUX
50 49 fveq2d φ1𝑜evalSubSRAX=1𝑜evalSubSRalgSc1𝑜mPolyUX
51 eqid algSc1𝑜mPolyU=algSc1𝑜mPolyU
52 9 a1i φ1𝑜On
53 10 11 3 4 51 52 6 7 8 evlssca φ1𝑜evalSubSRalgSc1𝑜mPolyUX=B1𝑜×X
54 50 53 eqtrd φ1𝑜evalSubSRAX=B1𝑜×X
55 54 fveq2d φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=xBB1𝑜xyB1𝑜×yB1𝑜×X
56 eqidd φxBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
57 coeq1 x=B1𝑜×XxyB1𝑜×y=B1𝑜×XyB1𝑜×y
58 57 adantl φx=B1𝑜×XxyB1𝑜×y=B1𝑜×XyB1𝑜×y
59 30 8 sseldd φXB
60 fconst6g XBB1𝑜×X:B1𝑜B
61 59 60 syl φB1𝑜×X:B1𝑜B
62 4 fvexi BV
63 62 a1i φBV
64 ovex B1𝑜V
65 64 a1i φB1𝑜V
66 63 65 elmapd φB1𝑜×XBB1𝑜B1𝑜×X:B1𝑜B
67 61 66 mpbird φB1𝑜×XBB1𝑜
68 snex XV
69 64 68 xpex B1𝑜×XV
70 69 a1i φB1𝑜×XV
71 63 mptexd φyB1𝑜×yV
72 coexg B1𝑜×XVyB1𝑜×yVB1𝑜×XyB1𝑜×yV
73 70 71 72 syl2anc φB1𝑜×XyB1𝑜×yV
74 56 58 67 73 fvmptd φxBB1𝑜xyB1𝑜×yB1𝑜×X=B1𝑜×XyB1𝑜×y
75 fconst6g yB1𝑜×y:1𝑜B
76 75 adantl φyB1𝑜×y:1𝑜B
77 62 9 pm3.2i BV1𝑜On
78 77 a1i φyBBV1𝑜On
79 elmapg BV1𝑜On1𝑜×yB1𝑜1𝑜×y:1𝑜B
80 78 79 syl φyB1𝑜×yB1𝑜1𝑜×y:1𝑜B
81 76 80 mpbird φyB1𝑜×yB1𝑜
82 eqidd φyB1𝑜×y=yB1𝑜×y
83 fconstmpt B1𝑜×X=zB1𝑜X
84 83 a1i φB1𝑜×X=zB1𝑜X
85 eqidd z=1𝑜×yX=X
86 81 82 84 85 fmptco φB1𝑜×XyB1𝑜×y=yBX
87 74 86 eqtrd φxBB1𝑜xyB1𝑜×yB1𝑜×X=yBX
88 44 55 87 3eqtrd φxBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX=yBX
89 elpwg RSubRingSR𝒫BRB
90 29 89 mpbird RSubRingSR𝒫B
91 7 90 syl φR𝒫B
92 eqid 1𝑜evalSubS=1𝑜evalSubS
93 1 92 4 evls1fval SCRingR𝒫BQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
94 6 91 93 syl2anc φQ=xBB1𝑜xyB1𝑜×y1𝑜evalSubSR
95 94 fveq1d φQAX=xBB1𝑜xyB1𝑜×y1𝑜evalSubSRAX
96 fconstmpt B×X=yBX
97 96 a1i φB×X=yBX
98 88 95 97 3eqtr4d φQAX=B×X