Metamath Proof Explorer


Theorem evls1scafv

Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses evls1scafv.q Q = S evalSub 1 R
evls1scafv.w W = Poly 1 U
evls1scafv.u U = S 𝑠 R
evls1scafv.b B = Base S
evls1scafv.a A = algSc W
evls1scafv.s φ S CRing
evls1scafv.r φ R SubRing S
evls1scafv.x φ X R
evls1scafv.1 φ C B
Assertion evls1scafv φ Q A X C = X

Proof

Step Hyp Ref Expression
1 evls1scafv.q Q = S evalSub 1 R
2 evls1scafv.w W = Poly 1 U
3 evls1scafv.u U = S 𝑠 R
4 evls1scafv.b B = Base S
5 evls1scafv.a A = algSc W
6 evls1scafv.s φ S CRing
7 evls1scafv.r φ R SubRing S
8 evls1scafv.x φ X R
9 evls1scafv.1 φ C B
10 1 2 3 4 5 6 7 8 evls1sca φ Q A X = B × X
11 10 fveq1d φ Q A X C = B × X C
12 fvconst2g X R C B B × X C = X
13 8 9 12 syl2anc φ B × X C = X
14 11 13 eqtrd φ Q A X C = X