Metamath Proof Explorer


Theorem evls1subd

Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025)

Ref Expression
Hypotheses ressply1evl.q Q = S evalSub 1 R
ressply1evl.k K = Base S
ressply1evl.w W = Poly 1 U
ressply1evl.u U = S 𝑠 R
ressply1evl.b B = Base W
evls1subd.1 D = - W
evls1subd.2 - ˙ = - S
evls1subd.s φ S CRing
evls1subd.r φ R SubRing S
evls1subd.m φ M B
evls1subd.n φ N B
evls1subd.y φ C K
Assertion evls1subd φ Q M D N C = Q M C - ˙ Q N C

Proof

Step Hyp Ref Expression
1 ressply1evl.q Q = S evalSub 1 R
2 ressply1evl.k K = Base S
3 ressply1evl.w W = Poly 1 U
4 ressply1evl.u U = S 𝑠 R
5 ressply1evl.b B = Base W
6 evls1subd.1 D = - W
7 evls1subd.2 - ˙ = - S
8 evls1subd.s φ S CRing
9 evls1subd.r φ R SubRing S
10 evls1subd.m φ M B
11 evls1subd.n φ N B
12 evls1subd.y φ C K
13 6 oveqi M D N = M - W N
14 eqid Poly 1 S = Poly 1 S
15 eqid Poly 1 S 𝑠 B = Poly 1 S 𝑠 B
16 14 4 3 5 9 15 10 11 ressply1sub φ M - W N = M - Poly 1 S 𝑠 B N
17 13 16 eqtrid φ M D N = M - Poly 1 S 𝑠 B N
18 14 4 3 5 subrgply1 R SubRing S B SubRing Poly 1 S
19 subrgsubg B SubRing Poly 1 S B SubGrp Poly 1 S
20 9 18 19 3syl φ B SubGrp Poly 1 S
21 eqid - Poly 1 S = - Poly 1 S
22 eqid - Poly 1 S 𝑠 B = - Poly 1 S 𝑠 B
23 21 15 22 subgsub B SubGrp Poly 1 S M B N B M - Poly 1 S N = M - Poly 1 S 𝑠 B N
24 20 10 11 23 syl3anc φ M - Poly 1 S N = M - Poly 1 S 𝑠 B N
25 17 24 eqtr4d φ M D N = M - Poly 1 S N
26 25 fveq2d φ eval 1 S M D N = eval 1 S M - Poly 1 S N
27 26 fveq1d φ eval 1 S M D N C = eval 1 S M - Poly 1 S N C
28 eqid eval 1 S = eval 1 S
29 1 2 3 4 5 28 8 9 ressply1evl φ Q = eval 1 S B
30 29 fveq1d φ Q M D N = eval 1 S B M D N
31 4 subrgring R SubRing S U Ring
32 3 ply1ring U Ring W Ring
33 9 31 32 3syl φ W Ring
34 33 ringgrpd φ W Grp
35 5 6 grpsubcl W Grp M B N B M D N B
36 34 10 11 35 syl3anc φ M D N B
37 36 fvresd φ eval 1 S B M D N = eval 1 S M D N
38 30 37 eqtr2d φ eval 1 S M D N = Q M D N
39 38 fveq1d φ eval 1 S M D N C = Q M D N C
40 eqid Base Poly 1 S = Base Poly 1 S
41 eqid PwSer 1 U = PwSer 1 U
42 eqid Base PwSer 1 U = Base PwSer 1 U
43 14 4 3 5 9 41 42 40 ressply1bas2 φ B = Base PwSer 1 U Base Poly 1 S
44 inss2 Base PwSer 1 U Base Poly 1 S Base Poly 1 S
45 43 44 eqsstrdi φ B Base Poly 1 S
46 45 10 sseldd φ M Base Poly 1 S
47 29 fveq1d φ Q M = eval 1 S B M
48 10 fvresd φ eval 1 S B M = eval 1 S M
49 47 48 eqtr2d φ eval 1 S M = Q M
50 49 fveq1d φ eval 1 S M C = Q M C
51 46 50 jca φ M Base Poly 1 S eval 1 S M C = Q M C
52 45 11 sseldd φ N Base Poly 1 S
53 29 fveq1d φ Q N = eval 1 S B N
54 11 fvresd φ eval 1 S B N = eval 1 S N
55 53 54 eqtr2d φ eval 1 S N = Q N
56 55 fveq1d φ eval 1 S N C = Q N C
57 52 56 jca φ N Base Poly 1 S eval 1 S N C = Q N C
58 28 14 2 40 8 12 51 57 21 7 evl1subd φ M - Poly 1 S N Base Poly 1 S eval 1 S M - Poly 1 S N C = Q M C - ˙ Q N C
59 58 simprd φ eval 1 S M - Poly 1 S N C = Q M C - ˙ Q N C
60 27 39 59 3eqtr3d φ Q M D N C = Q M C - ˙ Q N C