Metamath Proof Explorer


Theorem evls1varsrng

Description: The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evls1varsrng.q Q = S evalSub 1 R
evls1varsrng.o O = eval 1 S
evls1varsrng.v V = var 1 U
evls1varsrng.u U = S 𝑠 R
evls1varsrng.b B = Base S
evls1varsrng.s φ S CRing
evls1varsrng.r φ R SubRing S
Assertion evls1varsrng φ Q V = O V

Proof

Step Hyp Ref Expression
1 evls1varsrng.q Q = S evalSub 1 R
2 evls1varsrng.o O = eval 1 S
3 evls1varsrng.v V = var 1 U
4 evls1varsrng.u U = S 𝑠 R
5 evls1varsrng.b B = Base S
6 evls1varsrng.s φ S CRing
7 evls1varsrng.r φ R SubRing S
8 1 3 4 5 6 7 evls1var φ Q V = I B
9 2 5 evl1fval1 O = S evalSub 1 B
10 9 a1i φ O = S evalSub 1 B
11 10 fveq1d φ O V = S evalSub 1 B V
12 3 a1i φ V = var 1 U
13 eqid var 1 S = var 1 S
14 13 7 4 subrgvr1 φ var 1 S = var 1 U
15 5 ressid S CRing S 𝑠 B = S
16 6 15 syl φ S 𝑠 B = S
17 16 eqcomd φ S = S 𝑠 B
18 17 fveq2d φ var 1 S = var 1 S 𝑠 B
19 12 14 18 3eqtr2d φ V = var 1 S 𝑠 B
20 19 fveq2d φ S evalSub 1 B V = S evalSub 1 B var 1 S 𝑠 B
21 eqid S evalSub 1 B = S evalSub 1 B
22 eqid var 1 S 𝑠 B = var 1 S 𝑠 B
23 eqid S 𝑠 B = S 𝑠 B
24 crngring S CRing S Ring
25 5 subrgid S Ring B SubRing S
26 6 24 25 3syl φ B SubRing S
27 21 22 23 5 6 26 evls1var φ S evalSub 1 B var 1 S 𝑠 B = I B
28 11 20 27 3eqtrrd φ I B = O V
29 8 28 eqtrd φ Q V = O V