Metamath Proof Explorer


Theorem evls1vsca

Description: Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses ressply1evl2.q Q = S evalSub 1 R
ressply1evl2.k K = Base S
ressply1evl2.w W = Poly 1 U
ressply1evl2.u U = S 𝑠 R
ressply1evl2.b B = Base W
evls1vsca.1 × ˙ = W
evls1vsca.2 · ˙ = S
evls1vsca.s φ S CRing
evls1vsca.r φ R SubRing S
evls1vsca.m φ A R
evls1vsca.n φ N B
evls1vsca.y φ C K
Assertion evls1vsca φ Q A × ˙ N C = A · ˙ Q N C

Proof

Step Hyp Ref Expression
1 ressply1evl2.q Q = S evalSub 1 R
2 ressply1evl2.k K = Base S
3 ressply1evl2.w W = Poly 1 U
4 ressply1evl2.u U = S 𝑠 R
5 ressply1evl2.b B = Base W
6 evls1vsca.1 × ˙ = W
7 evls1vsca.2 · ˙ = S
8 evls1vsca.s φ S CRing
9 evls1vsca.r φ R SubRing S
10 evls1vsca.m φ A R
11 evls1vsca.n φ N B
12 evls1vsca.y φ C K
13 id φ φ
14 eqid Poly 1 S = Poly 1 S
15 eqid Poly 1 S 𝑠 B = Poly 1 S 𝑠 B
16 14 4 3 5 9 15 ressply1vsca φ A R N B A W N = A Poly 1 S 𝑠 B N
17 13 10 11 16 syl12anc φ A W N = A Poly 1 S 𝑠 B N
18 6 oveqi A × ˙ N = A W N
19 5 fvexi B V
20 eqid Poly 1 S = Poly 1 S
21 15 20 ressvsca B V Poly 1 S = Poly 1 S 𝑠 B
22 19 21 ax-mp Poly 1 S = Poly 1 S 𝑠 B
23 22 oveqi A Poly 1 S N = A Poly 1 S 𝑠 B N
24 17 18 23 3eqtr4g φ A × ˙ N = A Poly 1 S N
25 24 fveq2d φ eval 1 S A × ˙ N = eval 1 S A Poly 1 S N
26 25 fveq1d φ eval 1 S A × ˙ N C = eval 1 S A Poly 1 S N C
27 eqid eval 1 S = eval 1 S
28 1 2 3 4 5 27 8 9 ressply1evl φ Q = eval 1 S B
29 28 fveq1d φ Q A × ˙ N = eval 1 S B A × ˙ N
30 4 subrgcrng S CRing R SubRing S U CRing
31 8 9 30 syl2anc φ U CRing
32 crngring U CRing U Ring
33 3 ply1lmod U Ring W LMod
34 31 32 33 3syl φ W LMod
35 2 subrgss R SubRing S R K
36 9 35 syl φ R K
37 4 2 ressbas2 R K R = Base U
38 36 37 syl φ R = Base U
39 4 ovexi U V
40 3 ply1sca U V U = Scalar W
41 39 40 mp1i φ U = Scalar W
42 41 fveq2d φ Base U = Base Scalar W
43 38 42 eqtrd φ R = Base Scalar W
44 10 43 eleqtrd φ A Base Scalar W
45 eqid Scalar W = Scalar W
46 eqid Base Scalar W = Base Scalar W
47 5 45 6 46 lmodvscl W LMod A Base Scalar W N B A × ˙ N B
48 34 44 11 47 syl3anc φ A × ˙ N B
49 48 fvresd φ eval 1 S B A × ˙ N = eval 1 S A × ˙ N
50 29 49 eqtr2d φ eval 1 S A × ˙ N = Q A × ˙ N
51 50 fveq1d φ eval 1 S A × ˙ N C = Q A × ˙ N C
52 eqid Base Poly 1 S = Base Poly 1 S
53 eqid PwSer 1 U = PwSer 1 U
54 eqid Base PwSer 1 U = Base PwSer 1 U
55 14 4 3 5 9 53 54 52 ressply1bas2 φ B = Base PwSer 1 U Base Poly 1 S
56 inss2 Base PwSer 1 U Base Poly 1 S Base Poly 1 S
57 55 56 eqsstrdi φ B Base Poly 1 S
58 57 11 sseldd φ N Base Poly 1 S
59 28 fveq1d φ Q N = eval 1 S B N
60 11 fvresd φ eval 1 S B N = eval 1 S N
61 59 60 eqtr2d φ eval 1 S N = Q N
62 61 fveq1d φ eval 1 S N C = Q N C
63 58 62 jca φ N Base Poly 1 S eval 1 S N C = Q N C
64 36 10 sseldd φ A K
65 27 14 2 52 8 12 63 64 20 7 evl1vsd φ A Poly 1 S N Base Poly 1 S eval 1 S A Poly 1 S N C = A · ˙ Q N C
66 65 simprd φ eval 1 S A Poly 1 S N C = A · ˙ Q N C
67 26 51 66 3eqtr3d φ Q A × ˙ N C = A · ˙ Q N C