Metamath Proof Explorer


Theorem evlsbagval

Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S may not be convenient. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses evlsbagval.q Q = I evalSub S R
evlsbagval.p P = I mPoly U
evlsbagval.u U = S 𝑠 R
evlsbagval.w W = Base P
evlsbagval.k K = Base S
evlsbagval.m M = mulGrp S
evlsbagval.e × ˙ = M
evlsbagval.z 0 ˙ = 0 U
evlsbagval.o 1 ˙ = 1 U
evlsbagval.d D = h 0 I | h -1 Fin
evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
evlsbagval.i φ I V
evlsbagval.s φ S CRing
evlsbagval.r φ R SubRing S
evlsbagval.a φ A K I
evlsbagval.b φ B D
Assertion evlsbagval φ F W Q F A = M v I B v × ˙ A v

Proof

Step Hyp Ref Expression
1 evlsbagval.q Q = I evalSub S R
2 evlsbagval.p P = I mPoly U
3 evlsbagval.u U = S 𝑠 R
4 evlsbagval.w W = Base P
5 evlsbagval.k K = Base S
6 evlsbagval.m M = mulGrp S
7 evlsbagval.e × ˙ = M
8 evlsbagval.z 0 ˙ = 0 U
9 evlsbagval.o 1 ˙ = 1 U
10 evlsbagval.d D = h 0 I | h -1 Fin
11 evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
12 evlsbagval.i φ I V
13 evlsbagval.s φ S CRing
14 evlsbagval.r φ R SubRing S
15 evlsbagval.a φ A K I
16 evlsbagval.b φ B D
17 fvexd φ Base U V
18 ovexd φ 0 I V
19 10 18 rabexd φ D V
20 3 subrgring R SubRing S U Ring
21 14 20 syl φ U Ring
22 eqid Base U = Base U
23 22 9 ringidcl U Ring 1 ˙ Base U
24 21 23 syl φ 1 ˙ Base U
25 22 8 ring0cl U Ring 0 ˙ Base U
26 21 25 syl φ 0 ˙ Base U
27 24 26 ifcld φ if s = B 1 ˙ 0 ˙ Base U
28 27 adantr φ s D if s = B 1 ˙ 0 ˙ Base U
29 28 11 fmptd φ F : D Base U
30 17 19 29 elmapdd φ F Base U D
31 eqid I mPwSer U = I mPwSer U
32 eqid Base I mPwSer U = Base I mPwSer U
33 31 22 10 32 12 psrbas φ Base I mPwSer U = Base U D
34 30 33 eleqtrrd φ F Base I mPwSer U
35 19 26 11 sniffsupp φ finSupp 0 ˙ F
36 2 31 32 8 4 mplelbas F W F Base I mPwSer U finSupp 0 ˙ F
37 34 35 36 sylanbrc φ F W
38 eqid S = S
39 1 2 4 3 10 5 6 7 38 12 13 14 37 15 evlsvvval φ Q F A = S b D F b S M v I b v × ˙ A v
40 16 snssd φ B D
41 resmpt B D b D F b S M v I b v × ˙ A v B = b B F b S M v I b v × ˙ A v
42 40 41 syl φ b D F b S M v I b v × ˙ A v B = b B F b S M v I b v × ˙ A v
43 42 oveq2d φ S b D F b S M v I b v × ˙ A v B = S b B F b S M v I b v × ˙ A v
44 eqid 0 S = 0 S
45 13 crngringd φ S Ring
46 45 ringcmnd φ S CMnd
47 45 adantr φ b D S Ring
48 3 subrgbas R SubRing S R = Base U
49 5 subrgss R SubRing S R K
50 48 49 eqsstrrd R SubRing S Base U K
51 14 50 syl φ Base U K
52 29 51 fssd φ F : D K
53 52 ffvelcdmda φ b D F b K
54 12 adantr φ b D I V
55 13 adantr φ b D S CRing
56 15 adantr φ b D A K I
57 simpr φ b D b D
58 10 5 6 7 54 55 56 57 evlsvvvallem φ b D M v I b v × ˙ A v K
59 5 38 47 53 58 ringcld φ b D F b S M v I b v × ˙ A v K
60 59 fmpttd φ b D F b S M v I b v × ˙ A v : D K
61 eldifsnneq b D B ¬ b = B
62 61 adantl φ b D B ¬ b = B
63 62 iffalsed φ b D B if b = B 1 ˙ 0 ˙ = 0 ˙
64 eqeq1 s = b s = B b = B
65 64 ifbid s = b if s = B 1 ˙ 0 ˙ = if b = B 1 ˙ 0 ˙
66 eldifi b D B b D
67 66 adantl φ b D B b D
68 9 fvexi 1 ˙ V
69 8 fvexi 0 ˙ V
70 68 69 ifex if b = B 1 ˙ 0 ˙ V
71 70 a1i φ b D B if b = B 1 ˙ 0 ˙ V
72 11 65 67 71 fvmptd3 φ b D B F b = if b = B 1 ˙ 0 ˙
73 3 44 subrg0 R SubRing S 0 S = 0 U
74 73 8 eqtr4di R SubRing S 0 S = 0 ˙
75 14 74 syl φ 0 S = 0 ˙
76 75 adantr φ b D B 0 S = 0 ˙
77 63 72 76 3eqtr4d φ b D B F b = 0 S
78 77 oveq1d φ b D B F b S M v I b v × ˙ A v = 0 S S M v I b v × ˙ A v
79 66 58 sylan2 φ b D B M v I b v × ˙ A v K
80 5 38 44 ringlz S Ring M v I b v × ˙ A v K 0 S S M v I b v × ˙ A v = 0 S
81 45 79 80 syl2an2r φ b D B 0 S S M v I b v × ˙ A v = 0 S
82 78 81 eqtrd φ b D B F b S M v I b v × ˙ A v = 0 S
83 82 19 suppss2 φ b D F b S M v I b v × ˙ A v supp 0 S B
84 10 2 3 4 5 6 7 38 12 13 14 37 15 evlsvvvallem2 φ finSupp 0 S b D F b S M v I b v × ˙ A v
85 5 44 46 19 60 83 84 gsumres φ S b D F b S M v I b v × ˙ A v B = S b D F b S M v I b v × ˙ A v
86 13 crnggrpd φ S Grp
87 86 grpmndd φ S Mnd
88 52 16 ffvelcdmd φ F B K
89 10 5 6 7 12 13 15 16 evlsvvvallem φ M v I B v × ˙ A v K
90 5 38 45 88 89 ringcld φ F B S M v I B v × ˙ A v K
91 fveq2 b = B F b = F B
92 fveq1 b = B b v = B v
93 92 oveq1d b = B b v × ˙ A v = B v × ˙ A v
94 93 mpteq2dv b = B v I b v × ˙ A v = v I B v × ˙ A v
95 94 oveq2d b = B M v I b v × ˙ A v = M v I B v × ˙ A v
96 91 95 oveq12d b = B F b S M v I b v × ˙ A v = F B S M v I B v × ˙ A v
97 5 96 gsumsn S Mnd B D F B S M v I B v × ˙ A v K S b B F b S M v I b v × ˙ A v = F B S M v I B v × ˙ A v
98 87 16 90 97 syl3anc φ S b B F b S M v I b v × ˙ A v = F B S M v I B v × ˙ A v
99 iftrue s = B if s = B 1 ˙ 0 ˙ = 1 ˙
100 68 a1i φ 1 ˙ V
101 11 99 16 100 fvmptd3 φ F B = 1 ˙
102 eqid 1 S = 1 S
103 3 102 subrg1 R SubRing S 1 S = 1 U
104 14 103 syl φ 1 S = 1 U
105 9 101 104 3eqtr4a φ F B = 1 S
106 105 oveq1d φ F B S M v I B v × ˙ A v = 1 S S M v I B v × ˙ A v
107 5 38 102 45 89 ringlidmd φ 1 S S M v I B v × ˙ A v = M v I B v × ˙ A v
108 98 106 107 3eqtrd φ S b B F b S M v I b v × ˙ A v = M v I B v × ˙ A v
109 43 85 108 3eqtr3d φ S b D F b S M v I b v × ˙ A v = M v I B v × ˙ A v
110 39 109 eqtrd φ Q F A = M v I B v × ˙ A v
111 37 110 jca φ F W Q F A = M v I B v × ˙ A v