Metamath Proof Explorer


Theorem evlsca

Description: Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evlsca.q Q = I eval S
evlsca.w W = I mPoly S
evlsca.b B = Base S
evlsca.a A = algSc W
evlsca.i φ I V
evlsca.s φ S CRing
evlsca.x φ X B
Assertion evlsca φ Q A X = B I × X

Proof

Step Hyp Ref Expression
1 evlsca.q Q = I eval S
2 evlsca.w W = I mPoly S
3 evlsca.b B = Base S
4 evlsca.a A = algSc W
5 evlsca.i φ I V
6 evlsca.s φ S CRing
7 evlsca.x φ X B
8 eqid I evalSub S B = I evalSub S B
9 eqid I mPoly S 𝑠 B = I mPoly S 𝑠 B
10 eqid S 𝑠 B = S 𝑠 B
11 eqid algSc I mPoly S 𝑠 B = algSc I mPoly S 𝑠 B
12 crngring S CRing S Ring
13 3 subrgid S Ring B SubRing S
14 6 12 13 3syl φ B SubRing S
15 8 1 9 10 2 3 11 4 5 6 14 7 evlsscasrng φ I evalSub S B algSc I mPoly S 𝑠 B X = Q A X
16 8 9 10 3 11 5 6 14 7 evlssca φ I evalSub S B algSc I mPoly S 𝑠 B X = B I × X
17 15 16 eqtr3d φ Q A X = B I × X