Metamath Proof Explorer


Theorem evlscl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlscl.q Q = I evalSub R S
evlscl.p P = I mPoly U
evlscl.u U = R 𝑠 S
evlscl.b B = Base P
evlscl.k K = Base R
evlscl.i φ I V
evlscl.r φ R CRing
evlscl.s φ S SubRing R
evlscl.f φ F B
evlscl.a φ A K I
Assertion evlscl φ Q F A K

Proof

Step Hyp Ref Expression
1 evlscl.q Q = I evalSub R S
2 evlscl.p P = I mPoly U
3 evlscl.u U = R 𝑠 S
4 evlscl.b B = Base P
5 evlscl.k K = Base R
6 evlscl.i φ I V
7 evlscl.r φ R CRing
8 evlscl.s φ S SubRing R
9 evlscl.f φ F B
10 evlscl.a φ A K I
11 eqid R 𝑠 K I = R 𝑠 K I
12 eqid Base R 𝑠 K I = Base R 𝑠 K I
13 ovexd φ K I V
14 1 2 3 11 5 evlsrhm I V R CRing S SubRing R Q P RingHom R 𝑠 K I
15 6 7 8 14 syl3anc φ Q P RingHom R 𝑠 K I
16 4 12 rhmf Q P RingHom R 𝑠 K I Q : B Base R 𝑠 K I
17 15 16 syl φ Q : B Base R 𝑠 K I
18 17 9 ffvelcdmd φ Q F Base R 𝑠 K I
19 11 5 12 7 13 18 pwselbas φ Q F : K I K
20 19 10 ffvelcdmd φ Q F A K