Step |
Hyp |
Ref |
Expression |
1 |
|
evlselvlem.d |
|
2 |
|
evlselvlem.e |
|
3 |
|
evlselvlem.c |
|
4 |
|
evlselvlem.h |
|
5 |
|
evlselvlem.i |
|
6 |
|
evlselvlem.j |
|
7 |
3
|
psrbagf |
|
8 |
7
|
ad2antrl |
|
9 |
2
|
psrbagf |
|
10 |
9
|
ad2antll |
|
11 |
|
disjdifr |
|
12 |
11
|
a1i |
|
13 |
8 10 12
|
fun2d |
|
14 |
|
undifr |
|
15 |
6 14
|
sylib |
|
16 |
15
|
adantr |
|
17 |
16
|
feq2d |
|
18 |
13 17
|
mpbid |
|
19 |
|
unexg |
|
20 |
19
|
adantl |
|
21 |
|
0zd |
|
22 |
13
|
ffund |
|
23 |
3
|
psrbagfsupp |
|
24 |
23
|
ad2antrl |
|
25 |
2
|
psrbagfsupp |
|
26 |
25
|
ad2antll |
|
27 |
24 26
|
fsuppun |
|
28 |
20 21 22 27
|
isfsuppd |
|
29 |
|
fcdmnn0fsuppg |
|
30 |
20 13 29
|
syl2anc |
|
31 |
28 30
|
mpbid |
|
32 |
5
|
adantr |
|
33 |
1
|
psrbag |
|
34 |
32 33
|
syl |
|
35 |
18 31 34
|
mpbir2and |
|
36 |
5
|
adantr |
|
37 |
|
difssd |
|
38 |
|
simpr |
|
39 |
1 3 36 37 38
|
psrbagres |
|
40 |
6
|
adantr |
|
41 |
1 2 36 40 38
|
psrbagres |
|
42 |
1
|
psrbagf |
|
43 |
42
|
adantl |
|
44 |
43
|
freld |
|
45 |
43
|
fdmd |
|
46 |
40 14
|
sylib |
|
47 |
45 46
|
eqtr4d |
|
48 |
11
|
a1i |
|
49 |
|
reldisjun |
|
50 |
44 47 48 49
|
syl3anc |
|
51 |
50
|
adantrl |
|
52 |
|
uneq12 |
|
53 |
52
|
eqeq2d |
|
54 |
51 53
|
syl5ibrcom |
|
55 |
8
|
ffnd |
|
56 |
10
|
ffnd |
|
57 |
|
fnunres1 |
|
58 |
55 56 12 57
|
syl3anc |
|
59 |
58
|
eqcomd |
|
60 |
|
fnunres2 |
|
61 |
55 56 12 60
|
syl3anc |
|
62 |
61
|
eqcomd |
|
63 |
59 62
|
jca |
|
64 |
63
|
adantrr |
|
65 |
|
reseq1 |
|
66 |
65
|
eqeq2d |
|
67 |
|
reseq1 |
|
68 |
67
|
eqeq2d |
|
69 |
66 68
|
anbi12d |
|
70 |
64 69
|
syl5ibrcom |
|
71 |
54 70
|
impbid |
|
72 |
4 35 39 41 71
|
f1o2d2 |
|