Metamath Proof Explorer


Theorem evlselvlem

Description: Lemma for evlselv . Used to re-index to and from bags of variables in I and bags of variables in the subsets J and I \ J . (Contributed by SN, 10-Mar-2025)

Ref Expression
Hypotheses evlselvlem.d D = h 0 I | h -1 Fin
evlselvlem.e E = g 0 J | g -1 Fin
evlselvlem.c C = f 0 I J | f -1 Fin
evlselvlem.h H = c C , e E c e
evlselvlem.i φ I V
evlselvlem.j φ J I
Assertion evlselvlem φ H : C × E 1-1 onto D

Proof

Step Hyp Ref Expression
1 evlselvlem.d D = h 0 I | h -1 Fin
2 evlselvlem.e E = g 0 J | g -1 Fin
3 evlselvlem.c C = f 0 I J | f -1 Fin
4 evlselvlem.h H = c C , e E c e
5 evlselvlem.i φ I V
6 evlselvlem.j φ J I
7 3 psrbagf c C c : I J 0
8 7 ad2antrl φ c C e E c : I J 0
9 2 psrbagf e E e : J 0
10 9 ad2antll φ c C e E e : J 0
11 disjdifr I J J =
12 11 a1i φ c C e E I J J =
13 8 10 12 fun2d φ c C e E c e : I J J 0
14 undifr J I I J J = I
15 6 14 sylib φ I J J = I
16 15 adantr φ c C e E I J J = I
17 16 feq2d φ c C e E c e : I J J 0 c e : I 0
18 13 17 mpbid φ c C e E c e : I 0
19 unexg c C e E c e V
20 19 adantl φ c C e E c e V
21 0zd φ c C e E 0
22 13 ffund φ c C e E Fun c e
23 3 psrbagfsupp c C finSupp 0 c
24 23 ad2antrl φ c C e E finSupp 0 c
25 2 psrbagfsupp e E finSupp 0 e
26 25 ad2antll φ c C e E finSupp 0 e
27 24 26 fsuppun φ c C e E c e supp 0 Fin
28 20 21 22 27 isfsuppd φ c C e E finSupp 0 c e
29 fcdmnn0fsuppg c e V c e : I J J 0 finSupp 0 c e c e -1 Fin
30 20 13 29 syl2anc φ c C e E finSupp 0 c e c e -1 Fin
31 28 30 mpbid φ c C e E c e -1 Fin
32 5 adantr φ c C e E I V
33 1 psrbag I V c e D c e : I 0 c e -1 Fin
34 32 33 syl φ c C e E c e D c e : I 0 c e -1 Fin
35 18 31 34 mpbir2and φ c C e E c e D
36 5 adantr φ d D I V
37 difssd φ d D I J I
38 simpr φ d D d D
39 1 3 36 37 38 psrbagres φ d D d I J C
40 6 adantr φ d D J I
41 1 2 36 40 38 psrbagres φ d D d J E
42 1 psrbagf d D d : I 0
43 42 adantl φ d D d : I 0
44 43 freld φ d D Rel d
45 43 fdmd φ d D dom d = I
46 40 14 sylib φ d D I J J = I
47 45 46 eqtr4d φ d D dom d = I J J
48 11 a1i φ d D I J J =
49 reldisjun Rel d dom d = I J J I J J = d = d I J d J
50 44 47 48 49 syl3anc φ d D d = d I J d J
51 50 adantrl φ c C e E d D d = d I J d J
52 uneq12 c = d I J e = d J c e = d I J d J
53 52 eqeq2d c = d I J e = d J d = c e d = d I J d J
54 51 53 syl5ibrcom φ c C e E d D c = d I J e = d J d = c e
55 8 ffnd φ c C e E c Fn I J
56 10 ffnd φ c C e E e Fn J
57 fnunres1 c Fn I J e Fn J I J J = c e I J = c
58 55 56 12 57 syl3anc φ c C e E c e I J = c
59 58 eqcomd φ c C e E c = c e I J
60 fnunres2 c Fn I J e Fn J I J J = c e J = e
61 55 56 12 60 syl3anc φ c C e E c e J = e
62 61 eqcomd φ c C e E e = c e J
63 59 62 jca φ c C e E c = c e I J e = c e J
64 63 adantrr φ c C e E d D c = c e I J e = c e J
65 reseq1 d = c e d I J = c e I J
66 65 eqeq2d d = c e c = d I J c = c e I J
67 reseq1 d = c e d J = c e J
68 67 eqeq2d d = c e e = d J e = c e J
69 66 68 anbi12d d = c e c = d I J e = d J c = c e I J e = c e J
70 64 69 syl5ibrcom φ c C e E d D d = c e c = d I J e = d J
71 54 70 impbid φ c C e E d D c = d I J e = d J d = c e
72 4 35 39 41 71 f1o2d2 φ H : C × E 1-1 onto D