Metamath Proof Explorer


Theorem evlsevl

Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evlsevl.q Q = I evalSub S R
evlsevl.o O = I eval S
evlsevl.w W = I mPoly U
evlsevl.u U = S 𝑠 R
evlsevl.b B = Base W
evlsevl.i φ I V
evlsevl.s φ S CRing
evlsevl.r φ R SubRing S
evlsevl.f φ F B
Assertion evlsevl φ Q F = O F

Proof

Step Hyp Ref Expression
1 evlsevl.q Q = I evalSub S R
2 evlsevl.o O = I eval S
3 evlsevl.w W = I mPoly U
4 evlsevl.u U = S 𝑠 R
5 evlsevl.b B = Base W
6 evlsevl.i φ I V
7 evlsevl.s φ S CRing
8 evlsevl.r φ R SubRing S
9 evlsevl.f φ F B
10 eqid x R Base S I × x = x R Base S I × x
11 sneq x = F b x = F b
12 11 xpeq2d x = F b Base S I × x = Base S I × F b
13 eqid Base U = Base U
14 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
15 3 13 5 14 9 mplelf φ F : h 0 I | h -1 Fin Base U
16 15 ffvelcdmda φ b h 0 I | h -1 Fin F b Base U
17 4 subrgbas R SubRing S R = Base U
18 8 17 syl φ R = Base U
19 18 adantr φ b h 0 I | h -1 Fin R = Base U
20 16 19 eleqtrrd φ b h 0 I | h -1 Fin F b R
21 ovexd φ b h 0 I | h -1 Fin Base S I V
22 snex F b V
23 22 a1i φ b h 0 I | h -1 Fin F b V
24 21 23 xpexd φ b h 0 I | h -1 Fin Base S I × F b V
25 10 12 20 24 fvmptd3 φ b h 0 I | h -1 Fin x R Base S I × x F b = Base S I × F b
26 eqid x Base S Base S I × x = x Base S Base S I × x
27 eqid Base S = Base S
28 27 subrgss R SubRing S R Base S
29 8 28 syl φ R Base S
30 29 adantr φ b h 0 I | h -1 Fin R Base S
31 30 20 sseldd φ b h 0 I | h -1 Fin F b Base S
32 26 12 31 24 fvmptd3 φ b h 0 I | h -1 Fin x Base S Base S I × x F b = Base S I × F b
33 25 32 eqtr4d φ b h 0 I | h -1 Fin x R Base S I × x F b = x Base S Base S I × x F b
34 33 oveq1d φ b h 0 I | h -1 Fin x R Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x = x Base S Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
35 34 mpteq2dva φ b h 0 I | h -1 Fin x R Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x = b h 0 I | h -1 Fin x Base S Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
36 35 oveq2d φ S 𝑠 Base S I b h 0 I | h -1 Fin x R Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x = S 𝑠 Base S I b h 0 I | h -1 Fin x Base S Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
37 eqid S 𝑠 Base S I = S 𝑠 Base S I
38 eqid mulGrp S 𝑠 Base S I = mulGrp S 𝑠 Base S I
39 eqid mulGrp S 𝑠 Base S I = mulGrp S 𝑠 Base S I
40 eqid S 𝑠 Base S I = S 𝑠 Base S I
41 eqid x I a Base S I a x = x I a Base S I a x
42 1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9 evlsvval φ Q F = S 𝑠 Base S I b h 0 I | h -1 Fin x R Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
43 2 27 evlval O = I evalSub S Base S
44 43 fveq1i O F = I evalSub S Base S F
45 eqid I evalSub S Base S = I evalSub S Base S
46 eqid I mPoly S 𝑠 Base S = I mPoly S 𝑠 Base S
47 eqid Base I mPoly S 𝑠 Base S = Base I mPoly S 𝑠 Base S
48 eqid S 𝑠 Base S = S 𝑠 Base S
49 7 crngringd φ S Ring
50 27 subrgid S Ring Base S SubRing S
51 49 50 syl φ Base S SubRing S
52 eqid I mPoly S = I mPoly S
53 eqid Base I mPoly S = Base I mPoly S
54 3 4 5 52 53 6 8 9 mplsubrgcl φ F Base I mPoly S
55 27 ressid S CRing S 𝑠 Base S = S
56 7 55 syl φ S 𝑠 Base S = S
57 56 oveq2d φ I mPoly S 𝑠 Base S = I mPoly S
58 57 fveq2d φ Base I mPoly S 𝑠 Base S = Base I mPoly S
59 54 58 eleqtrrd φ F Base I mPoly S 𝑠 Base S
60 45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59 evlsvval φ I evalSub S Base S F = S 𝑠 Base S I b h 0 I | h -1 Fin x Base S Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
61 44 60 eqtrid φ O F = S 𝑠 Base S I b h 0 I | h -1 Fin x Base S Base S I × x F b S 𝑠 Base S I mulGrp S 𝑠 Base S I b mulGrp S 𝑠 Base S I f x I a Base S I a x
62 36 42 61 3eqtr4d φ Q F = O F