Metamath Proof Explorer


Theorem evlsexpval

Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q = I evalSub S R
evlsaddval.p P = I mPoly U
evlsaddval.u U = S 𝑠 R
evlsaddval.k K = Base S
evlsaddval.b B = Base P
evlsaddval.i φ I Z
evlsaddval.s φ S CRing
evlsaddval.r φ R SubRing S
evlsaddval.a φ A K I
evlsaddval.m φ M B Q M A = V
evlsexpval.g ˙ = mulGrp P
evlsexpval.f × ˙ = mulGrp S
evlsexpval.n φ N 0
Assertion evlsexpval φ N ˙ M B Q N ˙ M A = N × ˙ V

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q = I evalSub S R
2 evlsaddval.p P = I mPoly U
3 evlsaddval.u U = S 𝑠 R
4 evlsaddval.k K = Base S
5 evlsaddval.b B = Base P
6 evlsaddval.i φ I Z
7 evlsaddval.s φ S CRing
8 evlsaddval.r φ R SubRing S
9 evlsaddval.a φ A K I
10 evlsaddval.m φ M B Q M A = V
11 evlsexpval.g ˙ = mulGrp P
12 evlsexpval.f × ˙ = mulGrp S
13 evlsexpval.n φ N 0
14 eqid mulGrp P = mulGrp P
15 14 5 mgpbas B = Base mulGrp P
16 eqid S 𝑠 K I = S 𝑠 K I
17 1 2 3 16 4 evlsrhm I Z S CRing R SubRing S Q P RingHom S 𝑠 K I
18 6 7 8 17 syl3anc φ Q P RingHom S 𝑠 K I
19 rhmrcl1 Q P RingHom S 𝑠 K I P Ring
20 14 ringmgp P Ring mulGrp P Mnd
21 18 19 20 3syl φ mulGrp P Mnd
22 10 simpld φ M B
23 15 11 21 13 22 mulgnn0cld φ N ˙ M B
24 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
25 1 2 14 11 3 16 24 4 5 6 7 8 13 22 evlspw φ Q N ˙ M = N mulGrp S 𝑠 K I Q M
26 25 fveq1d φ Q N ˙ M A = N mulGrp S 𝑠 K I Q M A
27 eqid Base S 𝑠 K I = Base S 𝑠 K I
28 eqid mulGrp S = mulGrp S
29 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
30 7 crngringd φ S Ring
31 ovexd φ K I V
32 5 27 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
33 18 32 syl φ Q : B Base S 𝑠 K I
34 33 22 ffvelcdmd φ Q M Base S 𝑠 K I
35 16 27 24 28 29 12 30 31 13 34 9 pwsexpg φ N mulGrp S 𝑠 K I Q M A = N × ˙ Q M A
36 10 simprd φ Q M A = V
37 36 oveq2d φ N × ˙ Q M A = N × ˙ V
38 26 35 37 3eqtrd φ Q N ˙ M A = N × ˙ V
39 23 38 jca φ N ˙ M B Q N ˙ M A = N × ˙ V