Metamath Proof Explorer


Theorem evlsgsummul

Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsummul.q Q = I evalSub S R
evlsgsummul.w W = I mPoly U
evlsgsummul.g G = mulGrp W
evlsgsummul.1 1 ˙ = 1 W
evlsgsummul.u U = S 𝑠 R
evlsgsummul.p P = S 𝑠 K I
evlsgsummul.h H = mulGrp P
evlsgsummul.k K = Base S
evlsgsummul.b B = Base W
evlsgsummul.i φ I V
evlsgsummul.s φ S CRing
evlsgsummul.r φ R SubRing S
evlsgsummul.y φ x N Y B
evlsgsummul.n φ N 0
evlsgsummul.f φ finSupp 1 ˙ x N Y
Assertion evlsgsummul φ Q G x N Y = H x N Q Y

Proof

Step Hyp Ref Expression
1 evlsgsummul.q Q = I evalSub S R
2 evlsgsummul.w W = I mPoly U
3 evlsgsummul.g G = mulGrp W
4 evlsgsummul.1 1 ˙ = 1 W
5 evlsgsummul.u U = S 𝑠 R
6 evlsgsummul.p P = S 𝑠 K I
7 evlsgsummul.h H = mulGrp P
8 evlsgsummul.k K = Base S
9 evlsgsummul.b B = Base W
10 evlsgsummul.i φ I V
11 evlsgsummul.s φ S CRing
12 evlsgsummul.r φ R SubRing S
13 evlsgsummul.y φ x N Y B
14 evlsgsummul.n φ N 0
15 evlsgsummul.f φ finSupp 1 ˙ x N Y
16 3 9 mgpbas B = Base G
17 3 4 ringidval 1 ˙ = 0 G
18 5 subrgcrng S CRing R SubRing S U CRing
19 11 12 18 syl2anc φ U CRing
20 2 mplcrng I V U CRing W CRing
21 10 19 20 syl2anc φ W CRing
22 3 crngmgp W CRing G CMnd
23 21 22 syl φ G CMnd
24 crngring S CRing S Ring
25 11 24 syl φ S Ring
26 ovex K I V
27 25 26 jctir φ S Ring K I V
28 6 pwsring S Ring K I V P Ring
29 7 ringmgp P Ring H Mnd
30 27 28 29 3syl φ H Mnd
31 nn0ex 0 V
32 31 a1i φ 0 V
33 32 14 ssexd φ N V
34 1 2 5 6 8 evlsrhm I V S CRing R SubRing S Q W RingHom P
35 10 11 12 34 syl3anc φ Q W RingHom P
36 3 7 rhmmhm Q W RingHom P Q G MndHom H
37 35 36 syl φ Q G MndHom H
38 16 17 23 30 33 37 13 15 gsummptmhm φ H x N Q Y = Q G x N Y
39 38 eqcomd φ Q G x N Y = H x N Q Y