Step |
Hyp |
Ref |
Expression |
1 |
|
evlsgsummul.q |
|
2 |
|
evlsgsummul.w |
|
3 |
|
evlsgsummul.g |
|
4 |
|
evlsgsummul.1 |
|
5 |
|
evlsgsummul.u |
|
6 |
|
evlsgsummul.p |
|
7 |
|
evlsgsummul.h |
|
8 |
|
evlsgsummul.k |
|
9 |
|
evlsgsummul.b |
|
10 |
|
evlsgsummul.i |
|
11 |
|
evlsgsummul.s |
|
12 |
|
evlsgsummul.r |
|
13 |
|
evlsgsummul.y |
|
14 |
|
evlsgsummul.n |
|
15 |
|
evlsgsummul.f |
|
16 |
3 9
|
mgpbas |
|
17 |
3 4
|
ringidval |
|
18 |
5
|
subrgcrng |
|
19 |
11 12 18
|
syl2anc |
|
20 |
2
|
mplcrng |
|
21 |
10 19 20
|
syl2anc |
|
22 |
3
|
crngmgp |
|
23 |
21 22
|
syl |
|
24 |
|
crngring |
|
25 |
11 24
|
syl |
|
26 |
|
ovex |
|
27 |
25 26
|
jctir |
|
28 |
6
|
pwsring |
|
29 |
7
|
ringmgp |
|
30 |
27 28 29
|
3syl |
|
31 |
|
nn0ex |
|
32 |
31
|
a1i |
|
33 |
32 14
|
ssexd |
|
34 |
1 2 5 6 8
|
evlsrhm |
|
35 |
10 11 12 34
|
syl3anc |
|
36 |
3 7
|
rhmmhm |
|
37 |
35 36
|
syl |
|
38 |
16 17 23 30 33 37 13 15
|
gsummptmhm |
|
39 |
38
|
eqcomd |
|