Metamath Proof Explorer


Theorem evlslem3

Description: Lemma for evlseu . Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem3.p P = I mPoly R
evlslem3.b B = Base P
evlslem3.c C = Base S
evlslem3.k K = Base R
evlslem3.d D = h 0 I | h -1 Fin
evlslem3.t T = mulGrp S
evlslem3.x × ˙ = T
evlslem3.m · ˙ = S
evlslem3.v V = I mVar R
evlslem3.e E = p B S b D F p b · ˙ T b × ˙ f G
evlslem3.i φ I W
evlslem3.r φ R CRing
evlslem3.s φ S CRing
evlslem3.f φ F R RingHom S
evlslem3.g φ G : I C
evlslem3.z 0 ˙ = 0 R
evlslem3.a φ A D
evlslem3.q φ H K
Assertion evlslem3 φ E x D if x = A H 0 ˙ = F H · ˙ T A × ˙ f G

Proof

Step Hyp Ref Expression
1 evlslem3.p P = I mPoly R
2 evlslem3.b B = Base P
3 evlslem3.c C = Base S
4 evlslem3.k K = Base R
5 evlslem3.d D = h 0 I | h -1 Fin
6 evlslem3.t T = mulGrp S
7 evlslem3.x × ˙ = T
8 evlslem3.m · ˙ = S
9 evlslem3.v V = I mVar R
10 evlslem3.e E = p B S b D F p b · ˙ T b × ˙ f G
11 evlslem3.i φ I W
12 evlslem3.r φ R CRing
13 evlslem3.s φ S CRing
14 evlslem3.f φ F R RingHom S
15 evlslem3.g φ G : I C
16 evlslem3.z 0 ˙ = 0 R
17 evlslem3.a φ A D
18 evlslem3.q φ H K
19 crngring R CRing R Ring
20 12 19 syl φ R Ring
21 1 5 16 4 11 20 2 18 17 mplmon2cl φ x D if x = A H 0 ˙ B
22 fveq1 p = x D if x = A H 0 ˙ p b = x D if x = A H 0 ˙ b
23 22 fveq2d p = x D if x = A H 0 ˙ F p b = F x D if x = A H 0 ˙ b
24 23 oveq1d p = x D if x = A H 0 ˙ F p b · ˙ T b × ˙ f G = F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G
25 24 mpteq2dv p = x D if x = A H 0 ˙ b D F p b · ˙ T b × ˙ f G = b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G
26 25 oveq2d p = x D if x = A H 0 ˙ S b D F p b · ˙ T b × ˙ f G = S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G
27 ovex S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G V
28 26 10 27 fvmpt x D if x = A H 0 ˙ B E x D if x = A H 0 ˙ = S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G
29 21 28 syl φ E x D if x = A H 0 ˙ = S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G
30 eqid x D if x = A H 0 ˙ = x D if x = A H 0 ˙
31 eqeq1 x = b x = A b = A
32 31 ifbid x = b if x = A H 0 ˙ = if b = A H 0 ˙
33 simpr φ b D b D
34 16 fvexi 0 ˙ V
35 34 a1i φ 0 ˙ V
36 18 35 ifexd φ if b = A H 0 ˙ V
37 36 adantr φ b D if b = A H 0 ˙ V
38 30 32 33 37 fvmptd3 φ b D x D if x = A H 0 ˙ b = if b = A H 0 ˙
39 38 fveq2d φ b D F x D if x = A H 0 ˙ b = F if b = A H 0 ˙
40 39 oveq1d φ b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G = F if b = A H 0 ˙ · ˙ T b × ˙ f G
41 40 mpteq2dva φ b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G = b D F if b = A H 0 ˙ · ˙ T b × ˙ f G
42 41 oveq2d φ S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G = S b D F if b = A H 0 ˙ · ˙ T b × ˙ f G
43 eqid 0 S = 0 S
44 crngring S CRing S Ring
45 13 44 syl φ S Ring
46 ringmnd S Ring S Mnd
47 45 46 syl φ S Mnd
48 ovex 0 I V
49 5 48 rabex2 D V
50 49 a1i φ D V
51 45 adantr φ b D S Ring
52 4 3 rhmf F R RingHom S F : K C
53 14 52 syl φ F : K C
54 4 16 ring0cl R Ring 0 ˙ K
55 20 54 syl φ 0 ˙ K
56 18 55 ifcld φ if b = A H 0 ˙ K
57 53 56 ffvelrnd φ F if b = A H 0 ˙ C
58 57 adantr φ b D F if b = A H 0 ˙ C
59 6 3 mgpbas C = Base T
60 eqid 0 T = 0 T
61 6 crngmgp S CRing T CMnd
62 13 61 syl φ T CMnd
63 62 adantr φ b D T CMnd
64 11 adantr φ b D I W
65 cmnmnd T CMnd T Mnd
66 62 65 syl φ T Mnd
67 66 ad2antrr φ b D y 0 z C T Mnd
68 simprl φ b D y 0 z C y 0
69 simprr φ b D y 0 z C z C
70 59 7 mulgnn0cl T Mnd y 0 z C y × ˙ z C
71 67 68 69 70 syl3anc φ b D y 0 z C y × ˙ z C
72 5 psrbagf b D b : I 0
73 72 adantl φ b D b : I 0
74 15 adantr φ b D G : I C
75 inidm I I = I
76 71 73 74 64 64 75 off φ b D b × ˙ f G : I C
77 ovex b × ˙ f G V
78 77 a1i φ b D b × ˙ f G V
79 76 ffund φ b D Fun b × ˙ f G
80 fvexd φ b D 0 T V
81 5 psrbag I W b D b : I 0 b -1 Fin
82 11 81 syl φ b D b : I 0 b -1 Fin
83 82 simplbda φ b D b -1 Fin
84 73 ffnd φ b D b Fn I
85 84 adantr φ b D y I b -1 b Fn I
86 15 ffnd φ G Fn I
87 86 ad2antrr φ b D y I b -1 G Fn I
88 11 ad2antrr φ b D y I b -1 I W
89 eldifi y I b -1 y I
90 89 adantl φ b D y I b -1 y I
91 fnfvof b Fn I G Fn I I W y I b × ˙ f G y = b y × ˙ G y
92 85 87 88 90 91 syl22anc φ b D y I b -1 b × ˙ f G y = b y × ˙ G y
93 ffvelrn b : I 0 y I b y 0
94 73 89 93 syl2an φ b D y I b -1 b y 0
95 elnn0 b y 0 b y b y = 0
96 94 95 sylib φ b D y I b -1 b y b y = 0
97 eldifn y I b -1 ¬ y b -1
98 97 adantl φ b D y I b -1 ¬ y b -1
99 84 ad2antrr φ b D y I b -1 b y b Fn I
100 89 ad2antlr φ b D y I b -1 b y y I
101 simpr φ b D y I b -1 b y b y
102 99 100 101 elpreimad φ b D y I b -1 b y y b -1
103 98 102 mtand φ b D y I b -1 ¬ b y
104 96 103 orcnd φ b D y I b -1 b y = 0
105 104 oveq1d φ b D y I b -1 b y × ˙ G y = 0 × ˙ G y
106 ffvelrn G : I C y I G y C
107 74 89 106 syl2an φ b D y I b -1 G y C
108 59 60 7 mulg0 G y C 0 × ˙ G y = 0 T
109 107 108 syl φ b D y I b -1 0 × ˙ G y = 0 T
110 92 105 109 3eqtrd φ b D y I b -1 b × ˙ f G y = 0 T
111 76 110 suppss φ b D b × ˙ f G supp 0 T b -1
112 suppssfifsupp b × ˙ f G V Fun b × ˙ f G 0 T V b -1 Fin b × ˙ f G supp 0 T b -1 finSupp 0 T b × ˙ f G
113 78 79 80 83 111 112 syl32anc φ b D finSupp 0 T b × ˙ f G
114 59 60 63 64 76 113 gsumcl φ b D T b × ˙ f G C
115 3 8 ringcl S Ring F if b = A H 0 ˙ C T b × ˙ f G C F if b = A H 0 ˙ · ˙ T b × ˙ f G C
116 51 58 114 115 syl3anc φ b D F if b = A H 0 ˙ · ˙ T b × ˙ f G C
117 116 fmpttd φ b D F if b = A H 0 ˙ · ˙ T b × ˙ f G : D C
118 eldifsnneq b D A ¬ b = A
119 118 iffalsed b D A if b = A H 0 ˙ = 0 ˙
120 119 adantl φ b D A if b = A H 0 ˙ = 0 ˙
121 120 fveq2d φ b D A F if b = A H 0 ˙ = F 0 ˙
122 rhmghm F R RingHom S F R GrpHom S
123 14 122 syl φ F R GrpHom S
124 16 43 ghmid F R GrpHom S F 0 ˙ = 0 S
125 123 124 syl φ F 0 ˙ = 0 S
126 125 adantr φ b D A F 0 ˙ = 0 S
127 121 126 eqtrd φ b D A F if b = A H 0 ˙ = 0 S
128 127 oveq1d φ b D A F if b = A H 0 ˙ · ˙ T b × ˙ f G = 0 S · ˙ T b × ˙ f G
129 45 adantr φ b D A S Ring
130 eldifi b D A b D
131 130 114 sylan2 φ b D A T b × ˙ f G C
132 3 8 43 ringlz S Ring T b × ˙ f G C 0 S · ˙ T b × ˙ f G = 0 S
133 129 131 132 syl2anc φ b D A 0 S · ˙ T b × ˙ f G = 0 S
134 128 133 eqtrd φ b D A F if b = A H 0 ˙ · ˙ T b × ˙ f G = 0 S
135 134 50 suppss2 φ b D F if b = A H 0 ˙ · ˙ T b × ˙ f G supp 0 S A
136 3 43 47 50 17 117 135 gsumpt φ S b D F if b = A H 0 ˙ · ˙ T b × ˙ f G = b D F if b = A H 0 ˙ · ˙ T b × ˙ f G A
137 42 136 eqtrd φ S b D F x D if x = A H 0 ˙ b · ˙ T b × ˙ f G = b D F if b = A H 0 ˙ · ˙ T b × ˙ f G A
138 iftrue b = A if b = A H 0 ˙ = H
139 138 fveq2d b = A F if b = A H 0 ˙ = F H
140 oveq1 b = A b × ˙ f G = A × ˙ f G
141 140 oveq2d b = A T b × ˙ f G = T A × ˙ f G
142 139 141 oveq12d b = A F if b = A H 0 ˙ · ˙ T b × ˙ f G = F H · ˙ T A × ˙ f G
143 eqid b D F if b = A H 0 ˙ · ˙ T b × ˙ f G = b D F if b = A H 0 ˙ · ˙ T b × ˙ f G
144 ovex F H · ˙ T A × ˙ f G V
145 142 143 144 fvmpt A D b D F if b = A H 0 ˙ · ˙ T b × ˙ f G A = F H · ˙ T A × ˙ f G
146 17 145 syl φ b D F if b = A H 0 ˙ · ˙ T b × ˙ f G A = F H · ˙ T A × ˙ f G
147 29 137 146 3eqtrd φ E x D if x = A H 0 ˙ = F H · ˙ T A × ˙ f G