Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem4.b |
|
2 |
|
evlslem4.z |
|
3 |
|
evlslem4.t |
|
4 |
|
evlslem4.r |
|
5 |
|
evlslem4.x |
|
6 |
|
evlslem4.y |
|
7 |
|
evlslem4.i |
|
8 |
|
evlslem4.j |
|
9 |
|
simp2 |
|
10 |
5
|
3adant3 |
|
11 |
|
eqid |
|
12 |
11
|
fvmpt2 |
|
13 |
9 10 12
|
syl2anc |
|
14 |
|
simp3 |
|
15 |
|
eqid |
|
16 |
15
|
fvmpt2 |
|
17 |
14 6 16
|
3imp3i2an |
|
18 |
13 17
|
oveq12d |
|
19 |
18
|
mpoeq3dva |
|
20 |
|
nfcv |
|
21 |
|
nfcv |
|
22 |
|
nffvmpt1 |
|
23 |
|
nfcv |
|
24 |
|
nfcv |
|
25 |
22 23 24
|
nfov |
|
26 |
|
nfcv |
|
27 |
|
nfcv |
|
28 |
|
nffvmpt1 |
|
29 |
26 27 28
|
nfov |
|
30 |
|
fveq2 |
|
31 |
|
fveq2 |
|
32 |
30 31
|
oveqan12d |
|
33 |
20 21 25 29 32
|
cbvmpo |
|
34 |
|
vex |
|
35 |
|
vex |
|
36 |
34 35
|
eqop2 |
|
37 |
|
fveq2 |
|
38 |
|
fveq2 |
|
39 |
37 38
|
oveqan12d |
|
40 |
36 39
|
simplbiim |
|
41 |
40
|
mpompt |
|
42 |
33 41
|
eqtr4i |
|
43 |
19 42
|
eqtr3di |
|
44 |
43
|
oveq1d |
|
45 |
|
difxp |
|
46 |
45
|
eleq2i |
|
47 |
|
elun |
|
48 |
46 47
|
bitri |
|
49 |
|
xp1st |
|
50 |
5
|
fmpttd |
|
51 |
|
ssidd |
|
52 |
2
|
fvexi |
|
53 |
52
|
a1i |
|
54 |
50 51 7 53
|
suppssr |
|
55 |
49 54
|
sylan2 |
|
56 |
55
|
oveq1d |
|
57 |
6
|
fmpttd |
|
58 |
|
xp2nd |
|
59 |
|
ffvelrn |
|
60 |
57 58 59
|
syl2an |
|
61 |
1 3 2
|
ringlz |
|
62 |
4 60 61
|
syl2an2r |
|
63 |
56 62
|
eqtrd |
|
64 |
|
xp2nd |
|
65 |
|
ssidd |
|
66 |
57 65 8 53
|
suppssr |
|
67 |
64 66
|
sylan2 |
|
68 |
67
|
oveq2d |
|
69 |
|
xp1st |
|
70 |
|
ffvelrn |
|
71 |
50 69 70
|
syl2an |
|
72 |
1 3 2
|
ringrz |
|
73 |
4 71 72
|
syl2an2r |
|
74 |
68 73
|
eqtrd |
|
75 |
63 74
|
jaodan |
|
76 |
48 75
|
sylan2b |
|
77 |
7 8
|
xpexd |
|
78 |
76 77
|
suppss2 |
|
79 |
44 78
|
eqsstrd |
|