Metamath Proof Explorer


Theorem evlsmaprhm

Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. Compare evls1maprhm . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlsmaprhm.q Q = I evalSub R S
evlsmaprhm.p P = I mPoly U
evlsmaprhm.u U = R 𝑠 S
evlsmaprhm.b B = Base P
evlsmaprhm.k K = Base R
evlsmaprhm.f F = p B Q p A
evlsmaprhm.i φ I V
evlsmaprhm.r φ R CRing
evlsmaprhm.s φ S SubRing R
evlsmaprhm.a φ A K I
Assertion evlsmaprhm φ F P RingHom R

Proof

Step Hyp Ref Expression
1 evlsmaprhm.q Q = I evalSub R S
2 evlsmaprhm.p P = I mPoly U
3 evlsmaprhm.u U = R 𝑠 S
4 evlsmaprhm.b B = Base P
5 evlsmaprhm.k K = Base R
6 evlsmaprhm.f F = p B Q p A
7 evlsmaprhm.i φ I V
8 evlsmaprhm.r φ R CRing
9 evlsmaprhm.s φ S SubRing R
10 evlsmaprhm.a φ A K I
11 eqid 1 P = 1 P
12 eqid 1 R = 1 R
13 eqid P = P
14 eqid R = R
15 3 subrgring S SubRing R U Ring
16 9 15 syl φ U Ring
17 2 7 16 mplringd φ P Ring
18 8 crngringd φ R Ring
19 fveq2 p = 1 P Q p = Q 1 P
20 19 fveq1d p = 1 P Q p A = Q 1 P A
21 4 11 ringidcl P Ring 1 P B
22 17 21 syl φ 1 P B
23 fvexd φ Q 1 P A V
24 6 20 22 23 fvmptd3 φ F 1 P = Q 1 P A
25 eqid algSc P = algSc P
26 eqid 1 U = 1 U
27 2 25 26 11 7 16 mplascl1 φ algSc P 1 U = 1 P
28 27 eqcomd φ 1 P = algSc P 1 U
29 28 fveq2d φ Q 1 P = Q algSc P 1 U
30 29 fveq1d φ Q 1 P A = Q algSc P 1 U A
31 3 12 subrg1 S SubRing R 1 R = 1 U
32 9 31 syl φ 1 R = 1 U
33 12 subrg1cl S SubRing R 1 R S
34 9 33 syl φ 1 R S
35 32 34 eqeltrrd φ 1 U S
36 1 2 3 5 4 25 7 8 9 35 10 evlsscaval φ algSc P 1 U B Q algSc P 1 U A = 1 U
37 36 simprd φ Q algSc P 1 U A = 1 U
38 37 32 eqtr4d φ Q algSc P 1 U A = 1 R
39 24 30 38 3eqtrd φ F 1 P = 1 R
40 7 adantr φ q B r B I V
41 8 adantr φ q B r B R CRing
42 9 adantr φ q B r B S SubRing R
43 10 adantr φ q B r B A K I
44 simprl φ q B r B q B
45 eqidd φ q B r B Q q A = Q q A
46 44 45 jca φ q B r B q B Q q A = Q q A
47 simprr φ q B r B r B
48 eqidd φ q B r B Q r A = Q r A
49 47 48 jca φ q B r B r B Q r A = Q r A
50 1 2 3 5 4 40 41 42 43 46 49 13 14 evlsmulval φ q B r B q P r B Q q P r A = Q q A R Q r A
51 50 simprd φ q B r B Q q P r A = Q q A R Q r A
52 fveq2 p = q P r Q p = Q q P r
53 52 fveq1d p = q P r Q p A = Q q P r A
54 17 adantr φ q B r B P Ring
55 4 13 54 44 47 ringcld φ q B r B q P r B
56 fvexd φ q B r B Q q P r A V
57 6 53 55 56 fvmptd3 φ q B r B F q P r = Q q P r A
58 fveq2 p = q Q p = Q q
59 58 fveq1d p = q Q p A = Q q A
60 fvexd φ q B r B Q q A V
61 6 59 44 60 fvmptd3 φ q B r B F q = Q q A
62 fveq2 p = r Q p = Q r
63 62 fveq1d p = r Q p A = Q r A
64 fvexd φ q B r B Q r A V
65 6 63 47 64 fvmptd3 φ q B r B F r = Q r A
66 61 65 oveq12d φ q B r B F q R F r = Q q A R Q r A
67 51 57 66 3eqtr4d φ q B r B F q P r = F q R F r
68 eqid + P = + P
69 eqid + R = + R
70 7 adantr φ p B I V
71 8 adantr φ p B R CRing
72 9 adantr φ p B S SubRing R
73 simpr φ p B p B
74 10 adantr φ p B A K I
75 1 2 3 4 5 70 71 72 73 74 evlscl φ p B Q p A K
76 75 6 fmptd φ F : B K
77 1 2 3 5 4 40 41 42 43 46 49 68 69 evlsaddval φ q B r B q + P r B Q q + P r A = Q q A + R Q r A
78 77 simprd φ q B r B Q q + P r A = Q q A + R Q r A
79 fveq2 p = q + P r Q p = Q q + P r
80 79 fveq1d p = q + P r Q p A = Q q + P r A
81 17 ringgrpd φ P Grp
82 81 adantr φ q B r B P Grp
83 4 68 82 44 47 grpcld φ q B r B q + P r B
84 fvexd φ q B r B Q q + P r A V
85 6 80 83 84 fvmptd3 φ q B r B F q + P r = Q q + P r A
86 61 65 oveq12d φ q B r B F q + R F r = Q q A + R Q r A
87 78 85 86 3eqtr4d φ q B r B F q + P r = F q + R F r
88 4 11 12 13 14 17 18 39 67 5 68 69 76 87 isrhmd φ F P RingHom R