Step |
Hyp |
Ref |
Expression |
1 |
|
evlsmhpvvval.q |
|
2 |
|
evlsmhpvvval.p |
|
3 |
|
evlsmhpvvval.u |
|
4 |
|
evlsmhpvvval.d |
|
5 |
|
evlsmhpvvval.g |
|
6 |
|
evlsmhpvvval.k |
|
7 |
|
evlsmhpvvval.m |
|
8 |
|
evlsmhpvvval.w |
|
9 |
|
evlsmhpvvval.x |
|
10 |
|
evlsmhpvvval.i |
|
11 |
|
evlsmhpvvval.s |
|
12 |
|
evlsmhpvvval.r |
|
13 |
|
evlsmhpvvval.n |
|
14 |
|
evlsmhpvvval.f |
|
15 |
|
evlsmhpvvval.a |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
3
|
ovexi |
|
19 |
18
|
a1i |
|
20 |
2 16 17 10 19 13 14
|
mhpmpl |
|
21 |
1 16 17 3 4 6 7 8 9 10 11 12 20 15
|
evlsvvval |
|
22 |
|
eqid |
|
23 |
11
|
crngringd |
|
24 |
23
|
ringcmnd |
|
25 |
|
ovex |
|
26 |
4 25
|
rabex2 |
|
27 |
26
|
a1i |
|
28 |
23
|
adantr |
|
29 |
|
eqid |
|
30 |
16 29 17 4 20
|
mplelf |
|
31 |
3
|
subrgbas |
|
32 |
6
|
subrgss |
|
33 |
31 32
|
eqsstrrd |
|
34 |
12 33
|
syl |
|
35 |
30 34
|
fssd |
|
36 |
35
|
ffvelcdmda |
|
37 |
10
|
adantr |
|
38 |
11
|
adantr |
|
39 |
15
|
adantr |
|
40 |
|
simpr |
|
41 |
4 6 7 8 37 38 39 40
|
evlsvvvallem |
|
42 |
6 9 28 36 41
|
ringcld |
|
43 |
42
|
fmpttd |
|
44 |
3 22
|
subrg0 |
|
45 |
12 44
|
syl |
|
46 |
45
|
oveq2d |
|
47 |
|
eqid |
|
48 |
2 47 4 10 19 13 14
|
mhpdeg |
|
49 |
48 5
|
sseqtrrdi |
|
50 |
46 49
|
eqsstrd |
|
51 |
|
fvexd |
|
52 |
35 50 27 51
|
suppssr |
|
53 |
52
|
oveq1d |
|
54 |
23
|
adantr |
|
55 |
|
eldifi |
|
56 |
55 41
|
sylan2 |
|
57 |
6 9 22 54 56
|
ringlzd |
|
58 |
53 57
|
eqtrd |
|
59 |
58 27
|
suppss2 |
|
60 |
4 16 3 17 6 7 8 9 10 11 12 20 15
|
evlsvvvallem2 |
|
61 |
6 22 24 27 43 59 60
|
gsumres |
|
62 |
5
|
ssrab3 |
|
63 |
62
|
a1i |
|
64 |
63
|
resmptd |
|
65 |
64
|
oveq2d |
|
66 |
21 61 65
|
3eqtr2d |
|