Metamath Proof Explorer


Theorem evlsmhpvvval

Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsmhpvvval.q Q = I evalSub S R
evlsmhpvvval.p H = I mHomP U
evlsmhpvvval.u U = S 𝑠 R
evlsmhpvvval.d D = h 0 I | h -1 Fin
evlsmhpvvval.g G = g D | fld 𝑠 0 g = N
evlsmhpvvval.k K = Base S
evlsmhpvvval.m M = mulGrp S
evlsmhpvvval.w × ˙ = M
evlsmhpvvval.x · ˙ = S
evlsmhpvvval.i φ I V
evlsmhpvvval.s φ S CRing
evlsmhpvvval.r φ R SubRing S
evlsmhpvvval.n φ N 0
evlsmhpvvval.f φ F H N
evlsmhpvvval.a φ A K I
Assertion evlsmhpvvval φ Q F A = S b G F b · ˙ M i I b i × ˙ A i

Proof

Step Hyp Ref Expression
1 evlsmhpvvval.q Q = I evalSub S R
2 evlsmhpvvval.p H = I mHomP U
3 evlsmhpvvval.u U = S 𝑠 R
4 evlsmhpvvval.d D = h 0 I | h -1 Fin
5 evlsmhpvvval.g G = g D | fld 𝑠 0 g = N
6 evlsmhpvvval.k K = Base S
7 evlsmhpvvval.m M = mulGrp S
8 evlsmhpvvval.w × ˙ = M
9 evlsmhpvvval.x · ˙ = S
10 evlsmhpvvval.i φ I V
11 evlsmhpvvval.s φ S CRing
12 evlsmhpvvval.r φ R SubRing S
13 evlsmhpvvval.n φ N 0
14 evlsmhpvvval.f φ F H N
15 evlsmhpvvval.a φ A K I
16 eqid I mPoly U = I mPoly U
17 eqid Base I mPoly U = Base I mPoly U
18 3 ovexi U V
19 18 a1i φ U V
20 2 16 17 10 19 13 14 mhpmpl φ F Base I mPoly U
21 1 16 17 3 4 6 7 8 9 10 11 12 20 15 evlsvvval φ Q F A = S b D F b · ˙ M i I b i × ˙ A i
22 eqid 0 S = 0 S
23 11 crngringd φ S Ring
24 23 ringcmnd φ S CMnd
25 ovex 0 I V
26 4 25 rabex2 D V
27 26 a1i φ D V
28 23 adantr φ b D S Ring
29 eqid Base U = Base U
30 16 29 17 4 20 mplelf φ F : D Base U
31 3 subrgbas R SubRing S R = Base U
32 6 subrgss R SubRing S R K
33 31 32 eqsstrrd R SubRing S Base U K
34 12 33 syl φ Base U K
35 30 34 fssd φ F : D K
36 35 ffvelcdmda φ b D F b K
37 10 adantr φ b D I V
38 11 adantr φ b D S CRing
39 15 adantr φ b D A K I
40 simpr φ b D b D
41 4 6 7 8 37 38 39 40 evlsvvvallem φ b D M i I b i × ˙ A i K
42 6 9 28 36 41 ringcld φ b D F b · ˙ M i I b i × ˙ A i K
43 42 fmpttd φ b D F b · ˙ M i I b i × ˙ A i : D K
44 3 22 subrg0 R SubRing S 0 S = 0 U
45 12 44 syl φ 0 S = 0 U
46 45 oveq2d φ F supp 0 S = F supp 0 U
47 eqid 0 U = 0 U
48 2 47 4 10 19 13 14 mhpdeg φ F supp 0 U g D | fld 𝑠 0 g = N
49 48 5 sseqtrrdi φ F supp 0 U G
50 46 49 eqsstrd φ F supp 0 S G
51 fvexd φ 0 S V
52 35 50 27 51 suppssr φ b D G F b = 0 S
53 52 oveq1d φ b D G F b · ˙ M i I b i × ˙ A i = 0 S · ˙ M i I b i × ˙ A i
54 23 adantr φ b D G S Ring
55 eldifi b D G b D
56 55 41 sylan2 φ b D G M i I b i × ˙ A i K
57 6 9 22 54 56 ringlzd φ b D G 0 S · ˙ M i I b i × ˙ A i = 0 S
58 53 57 eqtrd φ b D G F b · ˙ M i I b i × ˙ A i = 0 S
59 58 27 suppss2 φ b D F b · ˙ M i I b i × ˙ A i supp 0 S G
60 4 16 3 17 6 7 8 9 10 11 12 20 15 evlsvvvallem2 φ finSupp 0 S b D F b · ˙ M i I b i × ˙ A i
61 6 22 24 27 43 59 60 gsumres φ S b D F b · ˙ M i I b i × ˙ A i G = S b D F b · ˙ M i I b i × ˙ A i
62 5 ssrab3 G D
63 62 a1i φ G D
64 63 resmptd φ b D F b · ˙ M i I b i × ˙ A i G = b G F b · ˙ M i I b i × ˙ A i
65 64 oveq2d φ S b D F b · ˙ M i I b i × ˙ A i G = S b G F b · ˙ M i I b i × ˙ A i
66 21 61 65 3eqtr2d φ Q F A = S b G F b · ˙ M i I b i × ˙ A i