Metamath Proof Explorer


Theorem evlspw

Description: Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)

Ref Expression
Hypotheses evlspw.q Q = I evalSub S R
evlspw.w W = I mPoly U
evlspw.g G = mulGrp W
evlspw.e × ˙ = G
evlspw.u U = S 𝑠 R
evlspw.p P = S 𝑠 K I
evlspw.h H = mulGrp P
evlspw.k K = Base S
evlspw.b B = Base W
evlspw.i φ I V
evlspw.s φ S CRing
evlspw.r φ R SubRing S
evlspw.n φ N 0
evlspw.x φ X B
Assertion evlspw φ Q N × ˙ X = N H Q X

Proof

Step Hyp Ref Expression
1 evlspw.q Q = I evalSub S R
2 evlspw.w W = I mPoly U
3 evlspw.g G = mulGrp W
4 evlspw.e × ˙ = G
5 evlspw.u U = S 𝑠 R
6 evlspw.p P = S 𝑠 K I
7 evlspw.h H = mulGrp P
8 evlspw.k K = Base S
9 evlspw.b B = Base W
10 evlspw.i φ I V
11 evlspw.s φ S CRing
12 evlspw.r φ R SubRing S
13 evlspw.n φ N 0
14 evlspw.x φ X B
15 1 2 5 6 8 evlsrhm I V S CRing R SubRing S Q W RingHom P
16 10 11 12 15 syl3anc φ Q W RingHom P
17 3 7 rhmmhm Q W RingHom P Q G MndHom H
18 16 17 syl φ Q G MndHom H
19 3 9 mgpbas B = Base G
20 eqid H = H
21 19 4 20 mhmmulg Q G MndHom H N 0 X B Q N × ˙ X = N H Q X
22 18 13 14 21 syl3anc φ Q N × ˙ X = N H Q X